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FOREWORD

The investigation described in this report was performed by staff members of
Lockheed Missiles and Space Company in cooperation with the George C. Marshall
Space Flight Center of the National Aeronautics and Space Administration under
Contract NAS 8-11079. Contract technical representative was H. Coldwater.

The work was conducted in Analytical and Experimental Mechanics, Aerospace
Sciences Laboratory, under the supervision of J. H. Klumpp. The project was
under the technical direction of E. Y. W. Tsui with associates F. A. Brogan,

J. M. Massard, P. Stern, and C. E. Stuhlman.
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NOTATIONS

Space and surface coordinates (Latin indices
will take the range 1, 2, 3, and Greek indices

assume the range 1, 2)
Spatial (surface) position vector of a point
Covariant spatial (surface) base vectors

Covariant and contravariant spatial (surface)

metric tensors

Determinant of .. la b ., cC
13 ( o’ ToB aﬁ)

Kronecker delta

Spatial (surface) permutation tensor

Christoffel symbols of the first and second

kinds in space (middle-surface)
Covariant spatial derivative with respect to

i
X and gij

Covariant surface derivative with respect to
x and a

o
Contravariant spatial (surface) stress tensor
Spatial (surface) strain tensor
Mean curvature

Gaussian curvature

Covariant second and third fundamental tensors

of middle-surface
Surface tensor of changes of curvature

Covariant surface vector of rotation of

normal at middle-surface
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Covariant moment and stress resultant vectors
Contravariant surface tensors of moments

and stress resultants

Load (external plus body forces) vector

Contravariant surface tensor of transverse

shear forces

Contravariant spatial (surface) tensor of

elastic moduli
Displacement vector

Covariant surface tensor of the rotation

in the middle-surface around the normal

Flexibility influence coefficients
Parameters defined in text

Dummy subscripts

Flexural rigidity = ___EEE__ET
12(1 - v°)
Modulus of elasticity

Boundary forces at station 1

Boundary forces of fixed edge shell due

to intermediate loads
Shear modulus
Total thickness of a shell

Mesh spacing in o and B coordinate

directions

Stiffness influence coefficients

vii
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Moments and stress resultants

Surface or body forces *
Transverse shear

Principal radii of curvature
Radius

Arc length of a curve

Change of temperature

Displacement components in directions

@, B, and 2

Strain energy per unit area of the undeformed .

middle-surface

Strain energy per unit volume of the
undeformed shell

Coordinate measured normal to the middle
surface of a shell

Unit base vectors in Cartesian coordinates
Cartesian coordinates in a plane
Cylindrical coordinates

Spherical coordinates

Orthogonal curvilinear coordinates on middle-
surface with coordinate curves along lines of

principal curvatures
Boundary displacements at a station i .

Line-element aslong o and B -curves,

where Al s A2 are the Lame parameters

Direct and shear strains

Changes of curvature and torsion of middle-

surface

viii




Poisson's ratio
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Rotations of the normal at the middle-

surface in the directions « and B

Partial derivative (=é§—)- )

(D= iy

1

ox
( )'B =( )'2

The function at a discrete point i ,

where i, J implies the o and 8

directions respectively

Thermal strain =

coefficient of linear

expansion multiplied by the change of

temperature (T)

Rotation in the middle-surface around

the normal

Other notations are defined in the text as required.
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SUMMARY

The study described in this report is concerned with the discontinuity stress
fields that arise in thin elastic multicellular shell structures subjected to
inertial, pressure, and thermal loading conditions in combination with residual
stresses resulting from fabrication and assembly. Since analytic and variational
methods were not believed to be suitable for solving such problems, numerical

techniques were investigated.

The method of analysis decided upon for the solution of the complete shell
structure is similar to the "slope-deflection" procedure used in the analysis

of indeterminate space structures, in that the structure is first analyzed in
terms of the behavior of the simple elements, cone, sphere, cylinder, and plate,
as represented by stiffness matrices which relate the boundary forces on the
element to boundary displacements. From this information and necessary con-
ditions of equilibrium and displacement compatibility between elements, a set
of equations can be formed and solved to yleld solutions for the actual element
displacement boundary values corresponding to the continuous structure. Once
the displacement boundary values for the elements are known, the stresses

throughout the various elements can be determined from the stiffness functions.

The major difficulty in this method is the determination of the stiffness matrices
for the individual shell elements. In the procedure described, this is accomplished

through the finite difference reduction of the shell equations. The success of
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the method is dependent on the ability to solve large sets of algebraic equa-
tions accurately and in reasonable computer time. A direct method for ac-

complishing such solutions was developed and is described.

This report includes a review of pertinent literature; the derivation of the
general shell equations and their specialization to the cone, sphere, cylinder,
and plate; a brief discussion of finite difference expressions; a description

of the method of solution, and conclusions and recommendations.

Information presented in appendices includes, a discussion of the geometry of

a specific multicellular shell structure, a discussion of the equations governing
anisotropic plates and cylinders, & general discussion of residual stresses in
welded structures, and a detailed description of the direct method developed

for solving large matrices of finite-difference equations.

xi
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1. INTRODUCTION

1.1 Background

The rational design of large launch and space vehicles containing multicellular
propellant containers requires a capability for determining the discontinuity
stress fields that arise in structures composed of a combination of shell elements
subjected to inertial, pressure, and thermal loading conditions together with
residual stresses resulting from fabrication and assembly. Shell structures
composed of dissimilar elements with some non-geodesic junctures generally

cannot be analyzed with closed-form techniques. Variational or energy methods
also appear to be impractical for solving such problems. Therefore, numerical

solution seems to be the only practicable recourse.

The purpose of this report is to present the equations applicable to the analysis
of multicellular shell structures, to describe a practicable numerical procedure
for obtaining the solution of such equations by digital computer, and to discuss
some practical aspects of the analysis of multicellular structures including

the effects of residual stresses resulting from fabrication techniques.

1.2 Scope of the Investigation

The scope of the investigation can be summarized in terms of the contents of

the individual chapters which form this report.

The first phase of the investigation includes a survey of pertinent literature.
The results of the survey are presented in Chapter 2 as (1) studies in general

shell theory, (2) analysis of specific shell types, and (3) analysis of multiply

1-1
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connected shell structures. This survey revealed no available procedure

that could be applied directly to solve the type of problem under consideration.

A detailed presentation of the infinitesimal theory of thin elastic shells is
contained in the third chapter. This information includes a critical review

of the theory. The objective of this review was to obtain the simplest possible
system of equations for development of the analysis. It is observed that,
because of the special geometry and loading of the structure, the major

differences of wvarious versions of Love's first approximation disappear.

Shell equations, based on Love's first approximation with additional assump-
tions, are derived using tensor analysis. These equations are then translated
into the conventional unabridged form, using an orthogonal coordinate system
with coordinate curves along lines of principal curvature. This set of equa-

tions furnishes the basis of the method of analysis described in this report.

In the transformation of the equilibrium equations, the six coupled equations
are condensed into three equations by the method of elimination. These three
equations are then written in terms of displacement components, allowing for
variable thickness and modulus of elasticity, and become the lengthy equations

pregsented in the third chapter.

In this chapter, the shell equations expressed in terms of displacement com-
ponents are presented not only in general form but also with coefficients

specilalized for spheres, cones, cylinders, and plates.

A theoretical treatment of the boundary conditions necessary for unigue solu-
tion of the governing differential equations of linear shell theory is also

1-2
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presented in this chapter. It is shown that four boundary conditions instead
of five are required when the Kirchhoff-Love approximations are used. The special

cases of fixed and free edge conditions are given.

In Chapter 4 membrane theory is discussed. This is an approximation of the

negligible. The equations for membrane shells are presented and a method of
solution is outlined. It is believed that in certain situations the solution

of a set of three differential equations in terms of the displacement components
u, v, and w may be more desirable. These equations can be obtained directly
from the general governing equations by setting the higher order terms involving
the thickness equal to zero. This implies a Tinite extensional stiffness but
negligible bending stiffness. With this approximation the governing eguations
for membrane shells are obtained and specialized for tapered cones and for uni-

form thickness cones, spheres, and cylinders.

An essential step in the solution of the multicellular shell problem described
in this report is the finite difference reduction of the shell equations to
algebraic form. A brief discussion of finite difference expressions is pre-
sented in Chapter 5 including the derivation from a Taylor series expansion of

a function of two variables or from the equivalent polynomial expression. Cen-
tral difference expressions for all derivatives occurring in the shell equations
are given explicitly in terms of a "rectangular" array of mesh points. The
procedure for generating similar expressions in terms of mesh points having arbi-

trary spacing is outlined in matrix form.
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Chapter 6 contains a discussion of the general method recommended for the
analysis of multicellular shell structures. This chapter includes discussions
of (é) general considerations, (b) stress and deformation of shell segments
under intermediate (non-edge) loads, (c) stress and deformation of shell seg-
ments due to edge loads, (d) equilibrium conditions and compatibility require-

ments at the juncture of shell segments, and (e) the general method of analysis.

Conclusions of the investigation and recommendations for further work are

presented in Chapter 7.

Four appendices are included in this report. The first defines in detail the
geometry of the specific bulkhead structure described in Procurement Request
TP3-85481. This includes the necessary dimensions, coordinate systems, and
intersections of the component shells which comprise the bulkhead. General
expressions for dimensions are presented. The equations for a sphere, cone,
cylinder, and plate are given for a system of rectangular coordinates. Then
a system of orthogonal curvilinear coordinates is presented for each of the
shell elements. TFrom this information the first fundamental form and base
vectors of the surfaces are given. By use of the second fundamental form the
principal radii of curvature are obtained. The intersection curves of the

various shell components are computed.

The derivation of equations governing the behavior of anisotropic plates and
cylinders is presented in Appendix II. This information is applicable to
stiffened plates and cylinders in the sense that if the stiffeners are closely
spaced the structure can be approximated as an anisotropic plate or cylinder.

Constitutive equations have been derived for plates and cylinders when the

1-k
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stiffeners are orthogonal and of equal size and spacing. Two special cases

are considered: (1) stiffeners are oriented in the coordinate directions, and
(2) fhe stiffeners are oriented 45 degrees from the coordinate directions. The
corresponding constitutive equations and the governing differential equations
expressed in terms of the displacement components uw, v, and w ére pre-

sented for these cases.

The general aspects of residusl stresses in welded structures are presented

in Appendix III. This includes (a) a general statement of the problem, (b)
methods of evaluating residual stresses, (¢) residual stress or strain patterns,
and (d) discussion and recommendations for further work. As a result of the
study of residual stresses, it is conceivable that the induced residual stresses
in the non-stress relieved welded vessels under consideration may be significant.
Further, it is almost impossible to predict residual stress magnitudes and distri-
butions analytically. Consequently, it is recommended that certain experiments
regarding residual stress magnitude and distribution should be performed so

that an accurate determination of welded joint efficiency and attenuation length

can be made and incorporated into the theoretical analysis.

The success of the method described in this report for the numerical solution
of the shell equations depends on a procedure for solving large sets of finite
difference equations accurately and in reasonable computer time. A direct

method for accomplishing such solutions is described in Appendix IV.

1-5
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2. LITERATURE SURVEY

A literature search has been undertaken to assess the methods of analysis of
miltiply connected plate and shell structures. In particular, concern is
focused around the juncture of conical, spherical, cylindrical shell segments

and flat plates.

Because the structure under consideration is unusual, the literature was evalu-
ated by work according to the following classgifications:

1. General Shell Theory

2. Specific Shell Geometries

3. Multiply Connected Shell Structures
The bibliography in Chapter 8 is also divided into these three subject

headings.

2.1 General Shell Theory

No attempt will be made to trace the evolution of shell theory up to the present
since this can be found in (A.8)T (A.14), (A.15) and certain references in the
bibliography of shell and shell-like structures by W. A. Nash (A.lz). Further-
more, attention will be directed to the theory of small deflections of thin
elastic isotropic shells. By small deformations we assume that the equilibrium
conditions for deformed elements are the same as if they were not deformed (A.lu).
The equilibrium equations in terms of stress resultants in this theory present

no difficulty and their general expressions have been derived by various investi-
gators (A.1), (A.2), (A.3), (a.4), (A.6), (A.12), (A.13), etc. Similarly, expres-

sions for strain-displacement relations present no difficulty.

*
Numbers within parentheses refer to literature listed in the Bibliography.

2-1
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The.essential problem in the theory has been in the formulation of appropriate
constitutive equations or stress-strain relations. For sufficiently thin iso-
tropic shells, a simple system of stress-strain equations can be formulated.
Such a system is known as "Love's First Approximation." Based on the Kirchhoff-
Love assumptions (A.4), (A.6), different versions of Love's first approximation
have been derived (A.1), (A.3), (A.4), (A.6), (A.10), (A.13), (A.1k), (A.15),
(A.16), etc. It can be easily observed, unfortunately, that considerable dif-
ferences occur with various workers, particularly as characterized by their
expressions for the changes of curvatures. Some of these expressions also
violate certain invariance requirements, such as the equilibrium condition
for moments about the normal direction of a shell element, for example. It
should be pointed out, however, that for practical applications discrepancies
in different forms of the comstitutive equations mentioned above are immaterial

as long as the rotation in the middle-surface about the normal is small (A.L).

2.2 BSpecific Shell Geometries

A review now will be made of the application of shell theory to the stress
analysis of specific shell geometries. In the formulation of the governing
differential equations for shells, a choice 1is possible as to the dependent
variables to be employed. These variables may be expressed in terms of:

A. Displacements,

B. Stress Resultants, or

C. A combination of Displacements and Stress

Resultants.

Examples of this development are found in (A.1), (A.3), (A.13), (A.16). Since
no general analytic method is available to solve the governing differential

2-2




M-03-63-1

equations, various methods of approach have been used in the solution of shells
having specific geometries, loadings and boundary conditions. These methods
include:

Exact

o

b. Asymptotic

¢c. Variational

d. DNumerical
Due to the fact that the structure to be investigated is composed of classical
shell elements, namely, plates, cones, spheres and cylinders, attention will
be restricted to these geometries which are essentially segments of shells of

revolution.

An exact solution in hypergeometric series can be obtained for spherical shell
segments axisymmetrically loaded at the edges (A.1), (A.13). Values of these
series for certain range of radius-to-thickness ratic have been recently tabu-
lated (B.15). Asymptotic solutions can also be obtained for this case and for
shells with an arbitrary meridional curve (B.12). For shells of revolution
loaded asymmetrically and having two boundaries which can be described by a
function of one of the coordinates, solutions can be obtained by the use of
Fourier series to reduce the partiasl differential equations of equilibrium to
ordinary differential equations that can then be solved by asymptotic methods.

Examples of this approach are found in (A.1), (B.2), (B.5), (B.10).

Variational methods, specifically, the method of Ritz or Galerkin, have not
been applied too widely to two-dimensional problems. This is probably because

the trial functions of the dependent variable will be in the form of a double

2-3
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series which usually converge very slowly. This method has been applied to the

intersection of two cylindrical shells (C.6).

Numerical solutions have become practical because of the availability of high-
spéed digital computers. One of the numerical methods c ammonly used involves
writing the governing differential equations in difference form tc yield s
system of linear algebraic equations. This system of equations is then solved
by standard methods for the dependent variables. On the other hand, numerical
integration can also be used in the solution of the governing equations (B.BO).
The Finite-Difference Method has been applied by many investigators to shells
having axisymmetric loads, one such example is given in (B.18). The case of
asymmetric loads can also be handled by the Fourier series method noted previ-
ously combined with the numerical analysis. For shells having arbitrary
boundaries and loads, numerical analysis seems to be the only practical recourse
for these problems at the present. It is interesting to note that available

literature on the numerical solutions for arbitrary shell segments is mostly

confined to the plate problems (A.1l), (B.4).

2.3 Multiply Connected Shell Structures

The development of stress analysis methods for specific plate and shell elements
subjected to given surface loads and edge loads, as described in section 2.2, is
of importance when these elements are employed as the main structure or when
they are combined into one integral structure. In the latter case, one will
find shell elements having different geometrical properties. Because of these

geometrical discontinuities the structure is analyzed by cutting along these

2
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discontinuities and then applying edge loads to the cut elements in order that

displacements at the shell interfaces be compatible.

Perhaps the simplest method for "joining" shell elements together is found
when studying shells of revolution subjected to axisymmetricsl loads. In
this case use is made of influence coefficients to insure campatibility of
displacements and stresses at the shell juncture. This method is described
in (A.1), (A.14), (a.17), (C.3), (c.4), (c.5). This method of analysis has
the advantage that is quite systematic once the influence coefficients have

been determined.

For shells of revolution subjected to asymmetric loading the problem of
Juncture stresses becomes more difficult. The technique is to develop a
solution with arbitrary edge loads which can be expressed in terms of Fourier
series. Then the Jjuncture stresses between shells are obtained through the
compatibility condition between loads and displacements which determines the
coefficients in the Fourier series. This method is used in plate bending
analysis (A.17) and is described for shell problems in (A.1), (A.2), (A.1k).
In determining the effect of edge loads the general problem is reduced to
golving ordinary differential equations after separation of variables. This
separation of variables is possible, however, only when the boundary edges

are a function of one coordinate.

The solution for cylindrical shells has been extensively explored for use in
roof structures (C.2). Analytic solution is obtained in terms of the radial

displacement w of an 8th order partial differential equation. This solution

2-5
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satisfies conditions for arbitrary boundaries along the generators and for

simple supports on the other edges.

2-6
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3. INFINITESIMAL THEORY OF THIN EILASTIC SHELLS

3.1 .Introduction

In-order to evaluate the stresses and deformations of the multicellular shell

structures with reasonable accuracy, it is essential that a set of basic shell
equations be established. These equations include the stress-strain relations,
strain-displacement relations, compatibility and equilibrium equations and the
constitutive equations which relate the moments and stress resultants in terms

of changes of curvature and strains.

A simple and yet consistent set of shell equations is obtainable through the
theory known as Love's first approximation. This theory is based on the fol-

lowing well-known Kirchhoff-Love hypothesis:

a. Normal stress (03) and shear strains ( can be neglected.

b. The shell is thin, 1.e., % << 1 where h 1is the thickness of

shell and r 1is the minimum principal radius of curvature.

c. Normals to the undeformed middle-surface remain normals to the

deformed middle-surface.

To achieve a simplified formulation, facilitating the expected numerical analysis

and conforming to the invariance requirements, additional assumptions are made:
d. Deformations are small.

e. Materials are homogeneous, isotropic and behave elastically within the

stress field.

f. Rotation in the middle-surface around the normal is small.

31




It is noted that the last assumption is justified in view of the symmetry in

geometry and loading of the structure under consideration.

In what follows the fundamentals of the differential geometry of a surface

which are essential to the classical shell elements are described first.

expressions are given in a compact form using tensor notation. Finally, the
general equations of the linear theory of thin elastic shells under the above
mentioned assumptions are expressed in terms of the physical parameters. This
set of equations, consequently, provides the basic information for development

of the numerical analysis.

3.2 Fundamentals of Differential Geometry of a Surface

A surface in a three-dimensional Euclidean space is defined as the locus of a
point whose position vector 'i » relative to some reference origin 0O, is a

function of two arbitrary curvilinear coordinates x¥ (=1, 2) . In terms

of right-handed orthogonal Cartesian coordinates x as shown 1n Fig. 3-1,

one has

X =x(x%) (3-2-1)
and

r=F+2Q, (3-2-2)
where r 1is a spatial position vector and &, is the unit normal vector.

3

The square of an arc element is given by the scalar product of Q? , hamely

3-2
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FIG.3-1 COORDINATE SYSTEMS
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ds =dr.dF =q dxdx® - (3-2-3)

where

Q,=Qu=d.°a, |, g“.f" , : (3-2-4)

and a_, 1s the metric tensor and a_ , a, are the covariant base vectors
’ i

[* 1% &

respectively. Equation (3-2-3) is called the first fundamental form of the

surface. The corresponding conjugate tensor and contravariant base vectors

are given by

d?*=a*=g“-a® a“=a**q, . (3-2-5)

It is noted that equations (3-2-4) and (3-2-5) also satisfy the following

relations
« « ! , a=f,
a*-a =a'a =§, = (3-2-6)
where & 1s the Kronecker delta.

The vector product of the covariant base vectors is expressed as

a.xg,=¢€.d, , (3-2-7)
where

€.~ (%‘9‘)‘9:0* € (3-2-8)
and

a=lg} , e,=e=0 , e=-@=| (3-2-9)

Similar expressions for the contravariant base vectors may be obtained
simply by raising the indices of equation (3-2-7).

3-4



M-03-63-1

The second and third fundamental forms of the surface are respectively defined

by the following scalar products

dF -da,=-b,dx"dx® | (3-2-10)
n
. = X d e B -o-
da,-da = b, b, dx'dx® | (3-2-11)
where
1
b‘*bitbp""g% .Q“a’ * b“’]b =gg’:g-'3, ( 3- 2-12)

’
The mean curvature (H) and Gaussian curvature (K) of the surface are

invariants which are expressed in terms of the covariant second fundamental

surface tensors, as follows

=.Er 3 ==-2E-.TF i-if' ) 3-e-13
kel Lgop g L b8

=Ta T2 %P Te THE TR

""T!_r , (3-2-14)

12
where rl s r2 are the principal radii of curvature and

«p  _ap— o“n o A _o

5, =e%e, . &n=5; & =2 (3-2-15)

If gi are the spatial covariant base vectors, then their first deriva-

tives may be written as

gi,j:’r‘;"g“ =r"K gk (3-2-16)

where the Christoffel symbols of the first kind ( f;n) and second kind

K
('% )in space are defined, in terms of the covariant differentiations of

3-5
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the spatial metric tensors, respectively by
1
Tin= 2 (ga.,i* i~ G ) . (3-2-17)

T.;"s qi G o (3-2-18)

Tt can be shown (A.2) that partisl differcntiations of a vector 4 in space
are given by

u,=ulg =ulg' . (3-2-19)
where

X A K
ui.= ux +[u R (3-2-20)
i % K
and
«

Equations (3-2-20) and (3-2-21) represent respectively the covariant

derivatives of the components uk » u

of the vector u .
A ~

For a given surface, the tensors aaB , baﬁ may be evaluated by equations
(3-2-3) and (3-2-10). It can be verified that they are related by the

equations of Codazzi and Gauss which can be written respectively

el-bl, =0 . (3-2-22)
b.b. - bbu=R,.,, . (3-2-23)

where § stands for the Riemann-Christoffel surface tensor which can

AaBT]

be written
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) |
ﬁ*"l = ﬂ,,u.m

R-ﬁ-ﬁ'f‘ M , © (3-2-24)

and the covariant derivatives of the surface tensors as shown in equation

(3-2-22) read

b = b - b

3.3 Derivation of Shell Equations

A. Stress-Strain Relations

For a linearly elastic, homogeneous and isotropic body, the spatial
(contravariant) stress tensor can be related to the (covariant) strain

tensor by the following condition

iz _é.(%.yw’ Y+ W, ¥) (3-3-1)

where g , , are respectively the determinants of the spatial metric
tensors of the undeformed and deformed body, and W 1is the strain energy
per unit volume of the undeformed shell. If the deformations are small,

95 # and the following expression may be assumed for the invariant

W=zE"%, . (3-3-2)
and equation (3-3-1) reads T =E‘j“!“, , (3-3-3)
where
Eijklgs(gikgjl.'_gdgjk*__%%_v_g g (3_3_4)
and
E _2-
G= CXOES)| (3-3-5
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It is noted that the tensor equation (3-3-3) is based on the general spatial
coordinates. It can be expressed in surface tensors through a suitable
transformation. If assumption (a) of section 3-1 is observed, it follows

that

~0f_E bt
L = - ] ex

where

E‘-“-'XG(G&QP?-&Q"OPX'* lf;v d"u‘“) . (3-3-7)

B. Strain-Displacement Relations

The strain tensor is a function of the metric tensors of the deformed

and undeformed body, namely

=& _q. _3-8
“q‘- 5 (", 9;,) ) (3-3-8)
Observing that .

%=§1‘51‘9q"‘§a‘ Uy +g - Ui tdod, (3-3-9)

where u is the displacement vector, equation (3-3-8) becomes

1
Xu- —2-(4_3_.‘ U, + g., ‘U, +u, uj)

~ | N
= E(gl Y *9, u’a) . (3-3-10)

Using equations (3-2-19) through (3-2-21) inclusive, and noticing
1

u = ung the desired strain-displacement relations are obtained (in

~

general coordinates) as follows

f=b(u vul) -
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The corresponding equation in covariant surface derivatives is
— \ r‘
¥, = E(uﬂu‘-t-u,'a) ub. (3-3-12)

and the covariant surface tensor of the rotation of the normal at the
middle-surface
A
W= Uy, +u,b, . (3-3-13)
The change of curvature tensor is obtained from the covariant differentiation
of equation (3-3-12), i.e.,

n "
o= =Yy, = Wa, + Wy +By byt Bebsy (3318

where
Poy= '|i'(”a||."u“|,) . (3-3-15)

The above antisymmetric surface tensor <p,’ describes the rotation in

the middle-surface around the normal.

C. Equilibrium Equations

Let f represent the load vector, measured per unit area of the middle-
surface, and nNg , Ba are the respective stress resultants and moments,

measured per unit length of the line Xo = constant , x, = O along the

3

boundary of an element. These vectors may be denoted by

a (n“*gx-rcl“gs) , (3-3-16)

Q“ ( au)
m.= (O").(m‘)gsx Qx) ) (3-3-17)
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where

h
3 |
n"=](l-2zH+z‘K)aﬂdz , (3-3-18)
. -i*
me r(l-ZzHﬂ.‘K)c“zdz, (3-3-19)
-**
r
(1-2zH +z'K)1t"dz , (3-3-20)
-t

the quantities H and K are defined by equations (2-3-14) and (2-3-15)

0
n

respectively.

The condition of static equilibrium of an element requires that (l) the
vector sum of all forces and (2) the moment of all forces about an arbitrary

point vanish. Consequently,

(nfaq®) +lGp=0 (3-3-21)

(m Joa=), +a.x(nfaa™)=0 . (3-3-22)

If equation (3-3-16) is substituted into equation (3-3-21) and if the fol-

lowing well known formulas of Weigarten and Gauss

g,,'sm"g,, +b,a, , (3-3-23)
. a; =-[,a"+b, q, , (3-3-24)
a,= -b’: a,, (3-3-25)

are employed, three equations are found by setting the coefficients of the
coveriant base vectors equal to zero. Then if the surface covariant deriva-
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tives are introduced, the following equilibrium equations are obtained
[
n“’l —b,cl“-r pt=0 |, (3-3-26a,b)
o .

n*b+qp+p> =0 . (3-3-26c)

Similarly, equation (3-3—22) can be transformed into
m“l -clP =0 , (3-3-26d,¢e)
o

- — A\
G»n“- ex’rﬂ’bu =° . (3"3'26f)

D. Constitutive Equations

The general expression of the strain energy per unit area of the unde-

formed middle-surface can be written (Ref. A.k) as
t
\4 =[(|-2zu+z‘k)wdz , (3-3-27)
h
)

in which W 1is defined by equation (3—3—2). W can be expanded into a
truncated Taylor series with respect to the z- coordinate, and the spatial
elastic moduli, change of curvature, and strain tensors can be expressed in
terms of their surface equivalents. Integrating (3-3-27) so obtained, through

the thickness, one arrives at

V=V+V,

o lih E"‘”’(?,j,q +:"—2 Pl ) (3-3-28)
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Since V 1is invariant under all transformations of coordinates, one can
. relate the stress resultants (naa) and moments (mgs) to equation (3-3-28)
in a way similar to that for the stresses (7°9) in terms of W (see sub-

section A above) to obtain:

=V Y, . (3-3-29a)

eV, P (3-3-29p)
Consequently, we have

: n**=h £ TM , (3-3-30a)

me= % g P\q ) (3-3-30p)

Since the equations of Codazzi and Gauss may be used to obtain the compati-
bility equations for strain and change of curvature tensors, the derivation

of the latter equations will not be considered.

3.4 Physical Interpretation of Shell Egquations

The formulas derived in the previous section for general middle-surface
coordincte systems are quite complicated when expanded. In order to perfomm
an engineering analysis, these equations must be translated into conventional
notation. For the problem under consideration, a simpler set of formulas can
be developed if we adopt the orthogonal curvilinear coordinate system formed
by the lines of curvature as coordinate curves. Equations for this special

coordinate system will be established.
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When coordinates coincide with the orthogonal lines of curvature, i.e.,
xl = ¢ and x2 =B , then equations (3-2-4) and (3-2-12) through (3-2-14)

inclusive yield

‘:u CJR Aa 0
‘:af=' = o
Q, qQ,, 0

>

bm thz '"%? 0
bu" = l .
9
b, b,, 0 B
AL A
a =m\K, , b=-= r: , (3-1-1a-d)

The surface Christoffel symbols take the following form

‘:\ =A\A\,;E' A\A\,\ ’ :o;'—'—A\A\,.E:‘-A\A\,t ’
]-:z= AzAan ’ L.z A"A”z , (3-4-2a-d)
T=41na F=La
" A‘ LI ’ o ATy, ’

(3-4-2e-n)
T & =i |
n” AtA”\ ? T:'zng"z *
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Appropriate substitution of the above quantities into equations (3-2—22) and
(3-2-23) gives the simplified form of the equations of Codazzi and Gauss, as

follows:

(_ ='|r;'A| , A -%_-A‘, , (3-4-3a,b)"

\ \ AA
(-A-, A‘,)-i' (—A: A“‘) + -E'T.: =0 . (3-k-k)

The variation of strains along the 2z direction can be related to the
surface strain tensor and change of curvature tensor in general curvilinear

coordinates as

- L]
€=(¥,+Qz) -‘:‘—"s % . (3-4-5)

These strain components, on the other hand, may be written in the selected

coordinate system as

A, du)a

=(€g,+X
€ V¥ ,z(d‘

+ (e, +X,2 %‘3)

+(x,+ax.,)( X ) . (3-4-6)

Comparison of equations (3-4-8) and (3-4-9) gives the following translation

law

3-1h
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< + - AR 7 o AA,
5,=A€ 7‘; Aq€, , Y- 2 LIV
e . (3-4-Ta-£)
: ﬂ"-‘ AX, " AX, ‘:‘ AR Xie.
In terms of physical components, the vectors 2& and ga may also be
expressed as
N, (a,)%N i Q 8

N,= NG, (Q“) + «g..a(qu +_4Q, , (3-4-8)

and
-* .

m= Ma* (a™) +Ma' (a") T . (3-4-9)

If equations (3-3-16, 17) and (3-4-8, 9) are compared, one obtains
1
Q
Y Y
Nap— n ( adﬂ) !
Q« = q’ (Q“)* R (3-4-10a-c)
{
a,
M' M‘z mll _‘_‘.) -m\1(° )l‘i
°|
M, = -
A Q ‘!
M,, M, m*'(a)? -m"(-g‘-‘-‘) )
22
°
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After suitable substitution of equations (3-4-1,2) and (3-4-5) through (3-4-10)

into equations (3-3-3) to (3-3-30) inclusive, one obtains the desired set of

conventional shell equations:

A. Stress-Strain Relations

_ E +Z %+ fE
S, = l_v,le.-rve, z(

l

3-4-1la-c
o, = [t +&+z ( ( )

T.=G(Y+22X,),
where é’s ,7 ,are the middle-surface strains, and x’s are the changes of

curvature and torsion.

B. Strain-Displacement Relations

€=€ +Z2X,

€=§ +2%, . (3-4-12a-c)
x..= Yo¥2Z X,, ’
where
= _ 1 A u
€ = A‘uh‘+ A‘A‘u‘A‘ﬁ.* —,.“ ,
€ w4 d u
et- Atut,:' A‘A:JIAQ.,:.- —l:: ’
< A fu AJfw
AL = | rapa) Fhuiy
Ve A,(A.),‘-" ‘(A.),t '
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\ \ \ |
Rl A A (btes)
Ly -

(%9 3%,
| |
(’A‘. Y~ A.AJ‘"‘\)

in which the rotations (L% ‘of the normal to the middle-surface in the

+ L
n

direction o and B are respectively given by

oot
1 0 (3—)4-—114-8.,1))
= U _ Uy,
w'_ hand rz Aa‘ .

C. Equilibrium Equations (Fig. 3-2)

(A,Nf), '+( A,N,,),t-\- NnA‘,t- NA,, + A,A,( P+ %) =0

(AQN't)’:‘- (A ‘N*)’;"N"A‘n- NI A\, +A\A‘l(a + %) =()
* ?

’

N,
(AQ, )'|+(A'Q‘)’a+ A.A,(P‘ s -%’) =0
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(AlM‘)9| +(AIMCI),‘+ MQAI,: M‘&,.- Al A|Q|- 0 ’

(AM,)+(A M)+ MA-MA -AAQ=0 ,
(3-k-15a-1)
M - L“
NN+ 77 = =0
D. Constitutive Equations
N,= = ',(e+ve)+N ,
N‘.-.‘E—-(C +VE&) +NT
h 2. h
N= hG(’l +-6—rxj , N“-hG('l +§..-X) , (52h-1601)
M=D (X +VX) +M" ,
M=D (X +V %) + M’ .
M =M, =D(I-v)X )

where

N-———!e dz ,

g--—fs'zdz
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F. Rotation in Middle-Surface about the Normal

W | u J
2g|l—uU,——u ——L A +=% (3-4-17)
: Z(A. R T R AN R
It should be pointed out that the effect of changes of temperature has

been provided for, as shown in equations (3-4-11) and (3-4-16).

The sign conventions for stresses and deformations adopted for the present

investigation are given in Fig. 3-2 and Fig. 3-3 respectively.

If the shears Q, &and Q, are eliminated in equations (3-4-15) and the

1
stress-resultants as well as moments are substituted by equations (3-4-16)

which in turn can be expressed by equations (3-4%-12) and (3-4-13), one then
obtains three governing differential equations of equilibrium (3-4-18).

The coefficients of these equations are shown in Table 3-4-1. It is noted

that the Codazzi and Gauss equations (3-4-3) and (3-4-4) have been used in

differentiations during the process of obtaining these governing equations.
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O.Iu‘,;"'qlul.z Q,U,""" a‘u,,;l- au,+ a.u,,:-op,;y q‘u,‘;t-u’uz-o-ay,,:‘l- auus,m

u:)

*

h
+Q, +aU, +0,U,+0 U, +00, +0, U= - SoAARTAN +

.‘I',PA

b‘u": b‘u":'- b3u '»;* b4u|+ bsut.:.. b.u‘:"“b.,u,;" b!ui:! bgut +hou), +bnu‘m

+b35’:- b'P s’;‘i'b“\.ls‘:' b,.u’"*' bwum:" bﬂusg - T:_D.(AiAapz * A,N;:-t-% W")
(3-4-18a-c)

ClU, +CU, +CU, +CU+CU, +CU, +CU, +CU, +C,U, +C U, +C U, &

M

CM, ¥C U, +C U, +C U, +CU,+CU, +CU, +C U, +C, U CU,

+C,U, +C U, +C U, +C.U, +C U, +C U, +C U, +C M, =

"n.

NN ML A, A e M B v AN
A,A,(g R + I +A-‘:'K,M’-+ i M:‘i"f&'f"' A,&M’t+ A M,
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FIG.3-3 DISPLACEMENTS AND ROTATIONS

3-21




M-03-63-1

Table 3-k-1 Coefficients & » by » and c, of General Shell
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Table 3-k-1 Coefficients a, , b, . ani o of General Shell (Cont.)
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. Table 3-4~1 Coefficients & » b, » and ¢, of General Shell (Cont.)
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Table 3-4-1 Coefficients a; of General Shell (Cont.)
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3.5 Differential Equations of Equilibrium for Specific Shells

Although the expressions for the coefficients of the governing differential
equations (3-4%-18) as listed in Table 3-4-1 and Table 3-4-2 are perfectly
general for all classical shell elements, in practice it is more desirable to
reduce these expressions to specific cases so that they can be readily applied
in the numerical analysis. This is accomplisned if the Lamé parameters and

the principal radii of curvature of the specific shells such as tnose listed

in Table 3-5-1 are introduced.

Table 3-5-1 PARAMETERS OF SPECIFIC SHELLS

SHELL o o) A, A, r o
Sphere b e R Rsing| R R
Cone X 2] I Xsing, | o )d-and;l
Cylinder e (8] | R co R
Plate X Y | l 00 oo

Appropriate substitution of these parameters into the general expressioms for
the coefficients of governing differential equations yields the specific

coefficients for the spheres, cones, cylinders and plates as shown in Table 3-5-2.

Thus far we have considered that the modulus of elasticity (E) » Poisson's
ratio (v) and the thickness of shell (n) are variables. If the material

properties are constants and the variations of shell thickness are prescribed,
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Table 3-5-2 Coefficients a; o bi , and s of Specific Shells
S PHERE CONE CYLINDER PLATE
Qe sind(i+ke) X sind R |
J; J-y -V 1~y (-
a, 25|n¢('+4h) 2xs\nd, 2R 2
1[p h[D h[D h (D
s eo] |l S| 0
{o K], = O\R |, o\h/, D\R/,
. | Jefou-w ) h D(H)) h (ou-v) h (o(\-»‘)
a ').sm¢DLh\ B ),:"4"("" ")),.] zxsm,o( R )| 2eo\ & || zo\ W,
Jeosele(vD cosd-+Vsing _sind,| h D
a, D "\'ﬁ'):’k(\m?’]-—f;}———(”t) —i-’-[l xi(-ﬁ).] 0 0
14y B3 1+y VY
A 7 ek =z =z 2
1_lz[ou-» h [o(-w |h [DC-") h [DG-)
a,s 20{}.(—7—,\ );Afk(ou-»)w] é.D( . ) e ) .ﬁ( : L
oot o 200 Ll [v0 1|_2=» ,h[vo0 h[vD _S__(vo)
oo pomerapleon] 5 (R | ) | S{R),
cote |z [0C1-9) _ h [oG-w
T H R ):'4"(0“ w).,] “20x\ R ), 0 o
a,s ‘ksln¢ 0 0 0
k
a,e - @ 0 0 0
a,- -k[cos¢+svn¢%] 0 0 0
2k
a,~ - singD (D(I-V))). 0 0 0
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a, (1+V)sme +k[‘£‘;:%‘_‘!‘l‘.’--c.os¢(%q vcos ¢, v 0
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Table 3-5-2 Coefficients a » b, , and c, of Specific Shells (Cont.)

k] ok i T ':.‘%_‘ 1
ST W | e e
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Table 3-5-2 Coefficients a; , b, , and c; of Specific Shells (Cont.)
sruiq—: Cone CYLINDER PLA
c= 2o 0 0 0
0
C,= (2-—v)—1-—R e 0 0 0
= z%a[comtm%-f] 0 0 0
Do
C"' 2 Ri snd 0 0 0
= D N
Cs E{;;,;[ cos¢+2 -%Q(DU'Q¢J 0 0 0
C -k!.li!ﬂérngEGﬁl s.#jh*d!gl&iifa’ ch°€%\ _.90 0
IR Sm | © , D Omme “Tkswe, | Ty
C,= E?‘—M;Iabo,.-s (n(w)),”] 0 0 0
Neone2lig Y.V} Lsmeomy, Op 5 D, Dcoss
G MR e o {2 cose s ) '.:%]] T 0 0
D ) D
Cy= (2‘»29_ (2#');;;;;5 Clﬂh'l 0
e D o o 0
"' R'sm'¢ Whanagis, Ly
c» %,(ou-ﬂ)’ —,‘-ﬁr(o(w )),. %— (N\-')), o 0
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Table 3-5-2 Coefficients a;, » b, ., and c; of Specific Shells {Cont.)
SPHERE CoONE CYLINDER, PLATR
d . swmé -Xs - -
. -i! ﬂ¢’D RD D
D D »)
bm‘l -2 Sy -2 Xowd, 2] -20
D o .
1 TR " Fses, w7
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Cul YD ] X w?,[' * &‘] RO 200
20 e D’ - -
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) G ]
| s e = | R M)
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“(WV)swe o3¢ (v D, | ! Doefl oo -
il [ Swp  CmAPD Smi0 o:‘-?] x’:w 3“*"“&-*2"'] ‘I""’--" w] o) - Oy

e...n,,nﬂ‘-f( .
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some of the expressions listed in Table 3-5-2 can be further simplified because
derivatives involving the material constants and shell thickness are either
identically equal to zero or can be differentiated, and consequently one can
express equations (3-4-18) explicitly. The governing differential equations

of five gpecific shell elements so obtained, namely: tapered cone, uniform cone,
uniform sphere, uniform cylinder and uniform plate are given by equations
(3-5-1) through (3-5-5). By "tapered" we mean the thickness varies linearly

along the generators whereas "uniform" means the tnickness is constant.
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Case 1 Tapered Cone:

ot il e 1 5 e

(l-v‘)““ (ij“)

(3-5-1a)

4y _ X ': ] R
s sttt

2 2
1= x___h b hl, _i=v sml h_h h
+ Peme [Hh.h “SNTE ¢:+..* ‘.*]v M“h 3‘,*“,‘ ++~‘ ] -Q'ﬂrthng -

-2v- e (-vh = *lw -J Aoy [\-sh.h])

- h
n x’sn’s“'on ¢’w"“ *iax fong, nx hn \l‘hﬂg L X"\‘MQ

A e P o 4 M
- Eh(‘ QE*N,.-*;]:;‘Z) (3-5-1b)

_c ‘\00:0 ‘:
- ¥ cosqu, - 053‘.4—(2 V)|2 "“#‘ o le’sm‘Q‘v’m et oo ’(l 2h, )
[

; : 3
- \X Tom ¢3*I2 Ston ”[4-”% ‘\‘6"‘."‘{1)‘1,. -XSM‘ "-i v{m— m“w_. - mv‘ -Sn %-6- \f*—:-l‘“

k 3

h * X
+6'm [\-Bh‘hl'l +——s«\g[l-5(2ﬂm| X k""i]w\l nx%t[4-9h, +69h‘-ﬁ,l

h a2l X ~y N g M M:
S — AT {l 3‘\ +GV‘\ ] -—?w--usmcp n (g— !‘hnt‘.“u’-ﬂ' = ok

(3-5-ic)
where hahsh
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Case 2 Uniform Cone:

\-v M_’; ., 3y .
XS“\Q,U,“ 2i$\n¢ s "“m‘u U 47— 2 V“--ﬁ-v,.-wc.osq»; w,_-qei*aw-

hXS|v\¢=(p +N )
20

(3-5-2a)

1R 2Y -y
— A
2 !‘ + 2*

S\, +Xsm¢

4k k - 4l:
(H- ?)v + x;m‘(u ?)v,.mg-'-,zi (l- ) ‘“ 3V

| tand k E{'\ng [ \ k“"ﬂé
..(’Z-V)k—— W mw"‘.+ (\ 29w ,“ l {“" > (-l w
2- l:D (Xsm¢ P.g.N .\._.rTL
"
(3-5-2b)
yDcos® Dcot* ¢ O _ 30
) lsm‘cp—:-u"‘ stm"-#u*(?'-v) rl $, Vo X"hl\é $m’¢ V’“O x’*ont e
D 40 ‘ 0
‘\:thb x‘hnqv XSm¢Dw,““2xsm¢ xee Xlain ¢ Wiseer S2sNg OV,
20 40 Dsm
+——-—x.s“¢w +sm¢ w,“ ————x,$‘“¢ w,“-s“m ?w,_ Tk te *w
My MT
wamfRe i L+ g
(3-5-2¢)
k §
where k= nkhn‘ r
| ]

3-33




M-03-63-1
Case 3 Uniform Sphere:

:'nﬂ|+t)uw+5';"-%-$(l+4k)um+cos¢(\+l=)u' “"':""" (|+\:)u+{‘" +(2-v)l:l Vi
k

—°—'"¥-'2 3-v+2k w-auiv ~ksmow (z-v)—--w shcosew, ¢ T3 (3-M cotd W,

+[(|w)sn 9?1«2;—‘:ﬁ¢k]ﬂ.’= -t smt(n A +N:+ %’)
(3-5-3a)

['” +(2-Wku +c-4¢[ ¢(3-2v)t]u.,+sm¢ 5 (AR, *’W" +eose? "’(|+4h)v

'2" é'" :m?‘—i)mk)v ~(-Nkw, ; ;{;" ~kcotew, "'[ (W)~ ZE(“V)]

=-1n%(p....¢pm %2) (3-5-3b)

sin D“SO D[H\’Sﬂ‘# smb
R Ou,, F@- v) ’u,”.ﬂ R‘"“u'“ F= oA N ST \: (tw)l

Y D 0 ) Dl 14V, 1
cosd— Q1[ -V——k—-i-——t-‘]u'f(?.‘V)EiV,“tm‘v,m -QT“NV’OQ*B{Z(‘ v)- & ‘\'s‘“t¢ V,.

o Dcosé +Vswmié
--ﬁ\sm¢w, g Q' Y ,”“ ?— oos ZEWOV,.""Q —1—,’“‘..* [-TF:-‘-—]W,‘,
% [ A- (W) sm #]w ~cosé (l-ﬂ—q)w.’ =2 3m $(W)we-H' s-’(g-zn R-“"ba‘s:s)

vhere L-aba, (3'5-SC)
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Case 4 Uniform Cylinder:

1y
Ru, +R Ut TV

_Qﬁ A2
v, =2 )
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(3-5-4a)

149 (nk) 5 M
—Z-—U,‘ R(H4E)V A — —('l-v)LRw - v‘“.,’._!.,___(pp aN' *_ﬁ,)
(3-5-4b)
-2 u,+ (-0 V+Dv Vv, ~RD W -z—w 2w -E.w
kR" R xe E ose ? (T (TP E Y
- T
_R(P %--vM + :,) (3 ~-5-4¢)
where k=
Case 5 Uniform Plate:
i~v il - ..-E_(pq-N"
u,“-t-—?—u,"-\» 2 V"y 120\ ]
(3-5-5a)
) h
+ \=v ]
2 Wt TZT Vet Viy == '6;3(‘3 +N,,)
(3-5-5b)
DW, +?.Dw,n"+Dw,""-(F;-vM:_+M:)
(3-5-5¢)
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3.6 Boundary Conditions

A unique solution of the equilibrium equations (3-3-26), constitutive equations
(3-3-30), and the strain-displacement equations (3-3-12); (3-3-14) for stresses
and displacements of a shell is determined by the boundary conditions. These
boundary conditions are given by & certain number of relations between forces,
moments, displacements or functions of these quantities at the edge of the

shell.

We let the boundary of tne shell be a smooth curve c¢ and introduce a system
of ortnogonal curvilinear coordinates (1) , {) ., in which the curve c¢ is

given by the equation { = constant . Along the boundary curve

g

a. Coordinates b. Deformations ¢. Forces

Fig. 3-4 Boundary Coordinates, Deformations and Forces

the displacement and rotation components are shown in Fig. 3-4b and the stress

resultants and couples are shown in Fig. 3-lc.

Then, the force, moment, displacement and rotation vectors at the boundary are
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I —

N=gN + 3N+g,Q,

=aM-qg
M “"iMC g;M;n ’
- - (3-6-1a-d)

¥=gqu+gu +aw

1 = g,w, -g.w .
The force and moment vectors are a function of five quantities Nn s NC ’ Q3 ’
Mg s Mgn - Thus the number of boundary conditions should be five. However,

because of the Kirchhoff-Love nhypotnesis, the number of boundary conditions
is actually four. To find the correct boundary conditions we consider the

work done by the boundary forces and displacements

w' =f[!.5] +0-M]ds | (3-6-2)

Expanding the scalar products in the above equation by use of equations

(3-6-1), we obtain

wb=[[Nnu,7+Ncug+Q3w +Mw, +M_ w | ds | (3-6-3)

4/ 4

The rotation wg can be written in terms of the displacement components by

A, R,
where
| (COSQX SanX)
R \Ur A ’
1 sn2i (_L.__l_)
R. 2 \T &/
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A -~angle between 5,, and g, .

A,, ~defined by ds=Adn

With the relation (3-6-4), equation (3-6-3) becomes

v [es M\ f M \ M s |
W=l 22 + (V- e + 0w - M 2] (3609

The last term in the integrand of this equation can be integrated by parts to

yield )
ch ar) -qulm+[%g.i»wdq

If Man is single-valued, equation (3-6-5) becomes

W'°=[ [(Nf%) u, + (Nc- %:)uc -i-((l3 +£;:%°9W+M<wn]ds .(3-6-6)

The proper four boundary conditions are given by equation (3-6-6).

Thus, the
required boundary forces and moments are
N M,
N, = N,;--M-s"
Re (3-6-Ta-d)
A -1 P
qQ-a+yx3y ,
chg hdg

3-38



M-03-63-1

or 1f the boundary conditions are in terms of displacements, the required

conditions are

an =4, )
U, = U, , (3-6-8 a-d)
W =W ,
W, =W, .

At a boundary the force, moment, displacement,and rotation vectors are

1 Z|
i

1Q1
Zl
+
Q|
ZlI
)]

X
i
101
ﬂgl

(3~6-9 a-d)

g =9uY+au+aw ,
‘-,} =§7w0 .

Certain specific boundary conditions are
a) Fixed edge

A fixed edge is defined by

U=0=0 . (3-6-100,b)
In terms of components this becomes
- = = = ~6-1l a-
u,=U=W =w, =0 . (d-6-1la-d)

However, wn can be written in terms of displacement components, so that the
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conditions for a fixed edge are

d=u=W :-a—“-l-‘-:O (5‘6“2&-&)

7 ¢ z
b) Free edge

At a free edge we have

N=M=0, (3-6-1%q,b)

n =-h—lc=a=M =°_ (5"6"40-&)

In the case that two shells are joined together and the rigidity at the edge
is of the same order of magnitude, the boundary conditions become continuity

requirements and are

1Z1
I
1zl

nN
-

(»-6-15a-d)

1<l
"
Zl

2 *

where 1 , 2 refers to shell one and two.
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L. MEMBRANE THEORY OF SHELLS

k.1 ‘Introduction

Membrane theory is an approximate method of analysis of thin shells based
upon the assumption that all moments are negligible. This assumption is
Justifiable either when the shell has very small bending resistance or when
the changes of curvature and torsion of the middle surface (xi ) x2 ) XlQ)
are very small. The first is found in flexible shells such as s diaphragm
while the second case is found in shells having finite bending stiffness but
a momentless state of stress. The equations describing the membrane behavior
in these two shells are identical. Shells have an advantage over a plate in
that transverse loads are sustained without appreciable bending provided its
edges are suitably supported, the loads do not vary greatly, and the radius
of curvature is smooth. It will be shown that with the assumption of
neglecting moments the transverse shear resultants are zero, and the unknown
stress resultants are reduced to Nl s N2 » N12 s N21 . Thus, the membrane
theory becomes a process of determining these four unknowns and the displace-

ment components (u , v , w) in the absence of moments.

L.2 gShell Equations

The equations of membrane theory can be obtained from the equations of the
general theory. When the moments are set equal to zero in equations (3-4-15)
it is seen that the transverse shear stress resultants (Ql s QE) must be

zero. Hence, the equilibrium equations for membrane theory are
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(ANy Doy + (ANs )i + Npp Ay 5 - Ny Ay ) +A) Aypy = 0,
(ANyo)sy + (AN)sp + Ny Ay - M) Ay 5+ A Aypy, = O,
NN, (k-2-1a-4d)
R & B |
1 %o
No-Wy = 0

These equations involve four unknowns. From the last of these equations it
is seen that the shear stress resultants ng and Nzl are equal. This in
effect reduces the problem to three unknowns with three equations. Thus, the
problem of determining the stress resultants is statically determinate with

respect to the equilibrium of an infinitely small element, however, not neces-

sarily with respect to the entire shell.

Since membrane theory is concerned with determining Nl s N2 s ng s U, Vo,

w , equations (3-4-16) and strain-displacement relations (3-4-12) respectively

are
_ Eh - - T
N, = — (el + veg) + N,
1 -v
N o= —EB (e 4ve) 4N, (4-2-2a-c)
2 2 2 1
1 -v
N, = N, = hGy ,
and
A u
- 1 1,2 3
1 Al 1,1 AIAE 2 rl
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A u
- 2,1 3
€&, = T u + u, + —= (4-2-3a-c)
2 A2 2,2 AlAQ 1 r, )

Equations (4-2-1), (4-2-2) and (L-2-3) are the complete set of equations for
membrane theory. In many cases it is convenient to solve the equations in two

steps. The first step would be to solve equation (k-2-1) for N, N, N

12
with arbitrary functions of integration. These arbitrary functions are deter-

mined by the boundary loading. Once N, , N

1 N are known the strains can

2’ "12

be determined by equation (M—E-E). When these strains are substituted into
equation (4-2-3), the displacements are obtained by solving this set of equa-
tions in two parts, i.e., the displacements for the particular strains and
the displacements of the homogeneous set of equations. This last set yields

additional functions of integration to satisfy certain displacement boundary

conditions.

The method of analysis as presented is in many problems convenient, however

not compulsory. A single system of equations in u , v , w can be obtained
by expressing the stress resultants in terms of displacements by use of equa-
tions (4-2-2) and (L-2-3). Then these stress resultants are substituted into
equation (4-2-1) to yield the desired set of equations. It should be noted
that identical results can also be obtained directly from the general governing
differential equations (3-4-18) by setting ne = 0 . With this type of re-
duction it 1s assumed that the shell has finite rigidity in extension and in-

plane shear but no thickness to resist bending. If h2 is set to zero in

h-3
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equations (3-4-18) then the governing equations for membrane shells are given
by equations (4-2-La-c). The coefficients of these equations are given for a
general shell (Table 4-2-1) and then reduced to three specific cases (sphere,
cone and cylinder). Equations for a tapered cone and constant thickness cones,
spheres, and cylinders are presented by equations (4-2-5), (4-2-6), (k-2-7),

and (4-2-8) respectively.

au,+au, +au +au +au +au +al, +au, +au,

+°|5L.3 +qnu3= -—(JE—-:—‘)-( AtAtpt +A1.N:)

(4-2-4 abc)
bu, + bzu,"-r bsu. +bu, +bu, +bu,+bu, + bu, +bu,

bu’-:-bnua- (‘E:‘)(AA +AN)

CU, +CU,+C U, +C U +C U, = -A|A!(g-

= !Z.‘
w3 IZ‘.
~—"

Ll




Table 4-2-1 Coefficients a8, b,

of Membrane Shells
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of Membrane Shells (Cont.)
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Table 4-2-1 Coefficients a; » by and ¢,

of Membrane Shells (Cont.)
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Case 1 Tapered Cone:

g \ lﬁV
xsind, u,‘_+2‘m—-':—¢u,.+ sm4;(|fh.i—)u,_-’!—;"-ﬁ(t—vh,-a-)uﬁ- Vo h‘ )
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Case 3 Uniform Sphere:

\Y
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4.3 Boundary Conditions

The complete set of governing differential equations (4-2-4) of membrane
theory in terms of displacements is of the fourth order while the equations
of the general theory is of the eighth order. It has been shown that four
boundary conditions are required in the general theory; thus, membrane theory
must require two boundary conditions along each edge of the shell since the
order of the equation is one half that of the general theory. Referring to
Fig. 3-l4c it is seen that if all moments and transverse shear are zero the
and N

remaining stress resultants are XN T If the boundary conditions

¢
are expressed in terms of stresses they must be given by these two quantities.
If the boundary conditions are written in terms of displacements the re-
gquired conditions must be applied to ug and 1,1.n . Notice that in membrane
theory w and wn can not be specified at an edge. At a boundary of a

membrane shell the force, moment, displacement and rotation vectors are

[see equation (3—6-9&—d)]

=l
{1

icd|
"
o

(4-3-1a-4d)

o]
"
o

From these possible boundary conditions a membrane shell with rigid edge

restraint is given by the condition

ﬁn = ﬁg = 0.
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If the shell to be analyzed does not have boundary conditions compatible with
those given by equation (4-3-1) the membrane state will be disturbed around

the boundary and the general theory should be used.

ho11
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5. FINITE DIFFERENCE EXPRESSIONS

5.1 Introduction

For the solution of the shell equations presented in Chapter 3 finite
difference expressions are required for derivatives of tune following types:
A8 I If M of H I M g M
du ' do?’ 3a®’da* ’ 3p "3 3p% X 3p* '3adp ' Surop’
&f &
o df* " dua?dp’

The required expressions can be obtained from a truncated Taylor series ex-

pansion for a function of two variables, or from an equivalent polynomial

*
expansion. As explained in many standard references , expressions for forward,
backward, or central differences can be obtained through suitable selection of

points chosen for the expansion; and, tnrough the truncation of the series,

various accuracies can be achieved.

Consider the pattern of mesh points used to represent the function. Since
expressions for twelve derivatives are required here, the expansion must en-
compass a minimum of twelve points in addition to the "origin" about which the
expansion is made. Restricting attention to central differences the obvious

L

pattern is:

T

¥ For example see "Relaxation Methods," F. S. Shaw, Dover Publications, Inc.,

1953
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It can be shown that the highest degree of accuracy for a particular number of
polnts results if the pattern "mesh" is at least "rectangular" in the orthogonal
coordlinate system used. Finite difference expressions involving arbitrary
spacings can be derived, as indlicated below, but accuracy suffers. However,
finite difference expressions involving arbitrary spacings should at least be
considered because of the necessity for treating irregular boundaries (boundaries
which are not lines of principal curvature in the coordinate system used). Treat-
men. of such boundaries may be accomplished, in principle, by any of several
methods such as (1) subdivision of the mesh using a rectangular pattern, (2)

use of a pattern composed of arbitrary spacings matching the boundary, or (3)
gross approximation using the regular pattern. In general, the third procedure,
while the simplest, is inferior in accuracy to either of the first two. Use

of the first method requires either an increase in the number of simultaneous
equations to be solved or use of an iterative technique. The second method

does not necessarily increase the number of simultaneous equations but does
require the use of much more complicated difference expressions of somewhat

less accuracy than those for the rectangular net.
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5.2 Taylor Series Expansion for a Function of Two Variables

The Taylor series for the function f(d,&) can be written as:

fla, p).—.{(q.,,p,)-o-[(u-a.)au-t- (- )9, ]'F(«o,

L+ 7"1. [(u- %o)d, + (p- B, ]“f Sq,, g.) 3

where a‘ represents the differential operator —r“‘ » ete.

Using the central difference pattern:

12
i
1Y) i &l
1=\ i et
o ; f ‘ y
-2 ] i el Tz
-4 ]—l §-
-t L i
2
let: yy
[§
y e 3 e
A, =QR, p,’f p.
-l*‘ ] M |
Hom ¢-.
:‘ - % i o
uiﬁ' ul d"*" p.

etc.
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K
Also let the value of the function f(“; ﬁ) be represented by fl at

k 2
point q! , pl (e.ges f represents )t(q ,ﬂ,) ) » and denote derivatives

°
at point (G:, ﬁ:) as

=b“$=f,° s 5{, =6uf=f

ete .

a«ap é‘ﬂf f’dﬁ ?

Using this notation the Taylor series expansion including terms containing

desired derivatives through the fourtn order 1is:

2k K
f +ulf Rd-N £6+-“—f,“+—%’-—{pp +°‘f By £ap

3K 2k ak k a2k
+_:._ PGB B e By { (5-2-2)
) dotek 6 Jppp 2 xap 2 o BB
4k 4k q’k ﬁzk
_L_ + PL +—-"—-L

24 raqus 24 hpppp 4 saupp

(It can be seen that this expression is equivalent to the polynomial

sk
L

K e
¢ = k k 2k 2k kK ok
fl "](. FC X HC B HC, X THC B +Coay Byt a
sk 2k &k k 2k Ak 4
tc, By +c &, By +Coa B +c 0 +e b,

kork
0(1.

5-1;




M-03-63-1

5.3 ¥Finite Difference Expressions for a Rectangular Pattern

. For equal spacing h in the coordinaste O , and for equal spacing k in

the coordinate P » then:

: G2k ato -0 -
ﬁ: = h q;?': p::o p;1:.2R
x°=-h CX"=T‘ ﬂ.‘fo 5:" k
o’,=-2h o'\ =-h p =0 p. =K
u': = 0 o= h g,';. 2K p'“___ K
% = 0 oZi==h p=k Bk
So that the matrix equation is from (5.2.2):
i - - 413 2‘“4 g - ~ ° () ?
2h % L 2 1 i1 -1
- Rz T3 -‘-‘4 o .
h z :6; -%_? l ;’CC f\ - f‘
-h b h °
"2 e fud| |51
) - -t _A_hj ?_h‘ °
2h 2 3 3 - I {_;f:
2k 2K 2 °
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x
[t
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E
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/ kEEL o | [

_ = ) m— m= Tt ftwﬁ f:‘- f:

v | EEE %o wak BB e
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The inverse equation 1s:

- -] ) ° b
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From wnich the desired finite difference expressions can be extracted as:

{ -2 au m[faraf -8f + f]

f= aa' m[fﬂef -30{’ +tef f]
R A R
e LA ve el
-zf.-,-f[hef-sf f

‘ m&“ +'6{ sof +‘6{ f ] (5-3-30-1)

f

=1
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The same finite difference relationsnips expressed in pattern form are:

3 _ 1 ‘ M B o 48 -lg
a“ij I—Z_; 1. d
> {2 %6 -0 w6 -la W
dai; 12k )
| : .
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It snould be noted tnat by truncating the Taylor series expansion to include
only second order terms simplified expressions (less accurate than those

presented above) can be obtained for the first and second "total" derivatives.

{211

Tnese are:

Sl

fur S e ef 1) (53 4 0-d)
et £ 1)

0@
-+s‘T>

{,» 25" |l<2( f-?_{+f\)

The finite difference expressions for a "square" mesh can, of course, be

obtained by setting k equal to k in the relationships presented here.

*
If this is done the expressions become identical to those given by Shaw .

*
Loc. cit.



-03-63-1
5. TFinite Difference Expressions for Arbitrary Spacing
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Tne desired expressions for tne derivatives can be stated explicitly in
terms of the values of the function at the various points if tne inverse
of the square matrix is available. However, the manual inversion of this
matrix would be a tedious task since in general the coordinastes of each
point must be retained as algebraic quantities. Use of finite difference

expressions for arbitrary spacing of the mesh peints perhaps could be ac-

complished most efficiently in conjunction with the general computer solution

of the shell problem through use of a subroutine which would receive coordi-

nates of points in the mesh from the controlling routine, substitute them in

the matrix equation above, perform the inversion numerically, and return the

desired coefficients in the analogous finite difference expression to the

controlling routine for insertion inio tne governing equation, following

wnich the combined coefficients would be summed for each point to yield the

shell equation for the given central point in difference form. By repeating

the process for each central point, the required set of shell difference

equations could be formed.
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6. ANALYSIS OF MULTICELLULAR SHELL STRUCTURES

6.1 General Considerations

The problem considered in this chapter is the evaluation of elastic stresses
and deformations in multicellular shell structures as shown in Fig. 6-1. This
structure is subjected to certain static loadings such as internal pressure,
body forces, and temperature gradients. If it is assumed that these loads are
symmetric with respect to the diametrical planes bisecting each pair of cells
located opposite each other, only one-half of a cell [Fig. 6—2] need be con-
sidered in an analysis. Each cell on the other hand is composed of four basic
structural elements, namely: flat plate, segmented cone, sphere, and cylinder
as seen in Fig. 6-3. Referring to Fig. 6-3, it is noted that the edge rotation
(wn) along the boundary line EEEEEI is zero because of the assumed symmetric

loads.

The method of analysis to be presented for the solution of ﬁhis complex shell
structure is similar to that of the "slope-deflection"l method used in the
analysis of indeterminate space structures and the "direct stiffness"2 method
used in the analysis of idealized stiffened shell structures. An advantage of
this method is that it is readily adapted to solution by high-speed digital com-
puter. To place the structure in a form to which this method can be applied,

it is "cut" along boundary lines governed by the geometry; i.e., boundary of

cone, sphere, etc. as seen in Fig. 6-3. Then it is necessary to solve each

lTsui, E. Y. W., "Analysis of Haunched Octagonal Girder Space Frames,'" Journal
of the Structural Div., ASCE Proceedings Vol. 85, No. 3T 6, June 1959

®Purner, M. J., Clough, R. W., Martin, H. C., and Topp, L. J., 'Stiffness and
Deflection Analysis of Complex Structures," J.A.S., Vol 23, Sept 1956
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of the individual shell segments separately under the action of intermediate

and edge loads and then Jjoin the segments together to form a continuous structure
by means of applying proper boundary loads or displacements. It is assumed that
the cut structure will be made continuous at a finite number of discrete points
along the cut boundaries. The general scheme is to develop a "stiffness matrix"
for each shell segment which relates boundary forces to boundary displacements
of the shell segments. Then at the juncture of any two or more segments the
forces must be in equilibrium and the displacements must be compatible. At
those points which are not juncture points but are boundaries of the structure
either the forces or displacements must be known. From this given information

a set of simultaneous equations can be developed to solve for the unknown dis-
placements at a finite number of points. These equations are expressed in

terms of the stiffness coefficients of the individual shell elements, known
boundary forces and displacements, and boundary forces due to the intermediate
loads. After the unknown displacements are computed the forces at the discrete
points are obtained through use of the stiffness matrix. This then yields
forces and displacements along the cut boundaries which produce a continuous
structure. Once the boundary conditions are known stresses and displacements

internal to the shell segments can be computed.

6.2 Stress and Deformation of Shell Segments Under Intermediate Loads

As a first step in the overall analysis of a multicellular shell structure it
is required to obtain a solution for stresses and deformations of the shell
segments [Fig. 6—3] with their edges fixed from displacement and rotation
subjected to intermediate loads such as pressure, thermal gradients, etc. The

three governing differential equations in terms of the displacement components,

6-5
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u, v, w for all of the shell segments are given by equation (3-4-18) and
the coefficients of this equation are given in Table 3-5-2. When the shell
segments are of uniform thickness the governing equations are given by equa-
tions (3-5-2) through (3-5-5). Let L [u » v, w] denote the linear operator
of the governing equations and g{a , B) th
of the intermediate loads. The independent variables o , B are orthogonal
curvilinear coordinates and for the specific shell segments these variables

are given in Table 3-5-1. Then instead of writing equation (3-4-18) or (3-5-2)

through (3-5—5) in full the governing equations are given by
L [u s Vo, W] = g(a ) B) (6'2—1)

For a plate the equations uncouple so that it is required to solve two sets
of equations; i.e., one for u, v and the other for w . At the shell
boundary we require that the displacement and rotation vectors be zero

[E :4§.= O] . This implies, as seen in section 3.6, that the displacement

components and normal derivation of w are zero
u = v = w = a—-—-— = 0 6-2_2

The boundary curve in terms of the specific shell coordinates can be obtained

by the methods described in Appendix I. These are shown in Fig. 6-4 for a

given set of dimensions R , Rl s RO ' Py and P - Symmetry is implied
cross the centerline due to the loading and geometry. Because of the complex

boundary curve of some of the shell segments it is felt that a solution of

the partial differential equations (6-2-1) with boundary conditions (6-2-2)

should be obtained by finite-difference methods.
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The scheme in finite-difference methods is to replace the continuous problem
by one having a finite number of variables. To accomplish this discretization
the independent variables (o , B) are replaced by a number of points which
may be determined by the intersection of a finite number of "mesh" lines. Thus
a rectangular mesh such as is shown in Fig. 6-5 produces a [inite number of
"mesh points" (pivotal points, nodal points) such as A . Some other meshes

which fill the entire space are square, triangular, and hexagonal.

£

e

R 4

Fig. 6-5 Rectangular Finite-Difference Mesh

Now, each of the dependent variables u(e , B) , v(e , B) , w(e , B) is

replaced by the varisbles ug s vg » wi defined only at the mesh points

(1, §) . If finite-difference expressions for derivatives of the dependent

variables are developed [see Chapter 5] for a given mesh type the governing

equation (6-2-1) can be replaced by an algebraic equation (this implies 3

equations) at a mesh point in terms of ug , vg s wg at a specific number

of mesh points. Then an algebraic equation can be written at each mesh point
inside and on the boundary curve. In all cases g sufficient number of equa-

tions can be written for the unknowns. Hence, this finite difference method
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replaces equations (6-2-1) and (6-2-2) by a set of simultaneous equations
AX = B (6-2-3)

where X 1is a column vector of dependent variables (uq ) VJ , WQ) » B

is a column vector of intermediate loads and A 1is a square matrix.

As an example of writing the governing differential equation in difference
form we consider a uniform thickness cylinder. The governing equations are

given by equation (3-5-4) as

2
a.u + a.u + a.v + a,w Rh_ (p. + N,7)
e ot a3V T 12D “Px ’
e M’Z
blu, + bgv, + b3v, + buw, + b5w, + b6w,e IEﬁ(Rp + N,” + —ﬁ—)
Clux + CEV: + CBV’ + CL}_V: + CSW: + 6 ,Xxee
NT T ’26
i C7W’eee tegvo T o R (pz T RT M’xx RE

For the cylinder let the boundary curve be given as e = constant,

x = constant and two lines of symmetry as shown in Fig. 6-6. This domain is
now covered by a uniform rectangular mesh which has mesh lines that coincide
_Ifi K ja— e

h -

xY

Fig. 6-6 Rectangular Mesh for Cylindrical Shell Segment
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with the boundary curve I’ . For this particular mesh the derivatives are
given by equation (5-3-3). In order to write a sufficient number of equations
for the unknowns it is necessary that the lower order equations such as given
by equation (5-3-4) be used. It was found that for this particular problem
if lower order second derivatives and a lower order third derivative of

in e as given by

3
i Vel 1 0 -1 _ -2 P
33 %g vy - 3vg + 3V, v, (6-2-5)

were used, the resulting difference equations are valid at all mesh points,
and that a sufficient number of equations were obtained for the unknowns.

These difference equations are:

Alurrus]+ Ayug +A, lug+ U1+ A, [Vi-vi-v +ETHAWe - WS = A,

B,luj-ul-urt +un] +B Ve v ]+ 8, V2 +B IV v 4By, -w( ]
+B‘[w“-w,‘} ;w:"'w:: ) +B'l[w: -w'] = = (6-2-6a-c)

Clut-usl+Cy V3P +3C,V] +Cy Vg +C V4GV 4\ -Vi-VI ]+ C fwy + W]
+Co WP +Wil+C W) +w;')+C, [Wiswi+w ' swl] +C W2 W] +C, WS

=;(::
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where

A= R/W B,= (1+v)/(8hK) =A,
Ag= (-¥)/(2RK 2) B,= (1-MR(1+4k) /(2h)
Ag= -2 (A, +A,) By=(1+k)/(RK")

Ay (1+9)/(8RK) By=-2[B,+8,]

Ag= v/2h B,=-(2-V)kR/(2h k)

AL=-R W (R+N] )/(12D) B,= -k /(2RK?
k =h /(12RY) B= -2[Be+B,] + 1/(2RK)
Bl =-R (Rp.m,’:mj. /R)/(12D)
C,=-vD/(2k R*h)
C,= -D/(R?>K?)
C,=-C,-D/(2R%K) - (2-V)D/(RF K)
C,= ~C,-4C,
Ce= (2-V)D/2RWK)
Cez-RD /bt
Cq= 4D/ (RWKY- AC,

Cq= 40 /(R*R)+4D/(RHKY)

6-11




M-03-63-1

Cq* -20/(RRK)

C= -D/(R*kY

C.* 6C,,+6C‘+4c’_o /(R k)

Co= -R(pa—N7R+M, +M, /o)

Although the finite-difference method is simple in principle the discreti-
zation gives rise to a number of practical problems such as graded nets,
curved boundaries, and the solution of a large set of simultaneous equations.
These have been discussed by Forsythel, Collatzg, and Varga3. The formulation
and solution of equation (6-2-3) is perhaps the most important and time con-

suming part of the analysis and is discussed in Appendix IV.

Once the displacements are known the internal stress resultants and couples

can be computed by equations (3-4-12, 13, 14 and 16). Along the shell boundary
three components of stress resultants and a stress couple as given by equations
(3-6-7a-d) can be computed at each mesh point. These quantities are denoted

as the fixed edge forces Ff which are given by the column vector

=]

)
=]

Fo= ¢ (@ (6-2-7)

=1 O

L ¢

L

lMilne, W. E., Numerical Solution of Differential Equations, John Wiley & Sous,
New York, 1957

2Collatz, L., The Numerical Treatment of Differential Equations, Springer-Verlag,
Berlin, 1960

3Varga, R. S., Matrix Iterative Analysis, Prentice-Hall, Inc., New York, 1962
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This equation will be used directly in the complete analysis and enters in

section 6.3.

The preceding presents a method to obtain a solution of shell segments with

their edges fixed, due to intermediate loads.

6.3 Stress and Deformation of Shell Segments due to Edge Effects

To apply the slope-deflection method it is required to determine a stiffness
matrix for each shell segment. Let points on the boundary of a shell be
denoted by i =1, 2, 3 -- n as shown in Fig. 6-7. At each point there

are [see section 3.6] four boundary forces Fi and four displacement components

Fig. 6-7 Shell Segment

6i which represent respectively

[ = ) r -
M i)
ﬁc u
Foo= o4 o y 8 = 9 _5 } . (6-3-1a,b)
Q W
e  “n )
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For a perfectly elastic shell segment if a unit displacement (uﬂ)i is intro-
duced at the boundary points 1, 2, 3 -- n , the induced force ﬁh at point 1

due to these displacements can be expressed as
(ﬁh)l =k (ag)y + kplug)y - k() = ;;; K500y

where kij are the stiffness influence coefficients. In general for a given

shell segment we can write the constitutive edge relations in matrix from

as
F = kb - (6-3-2)

The coefficients of k must be computed by methods such as the finite-differ-
ence method given in section 6.2. A procedure to obtain the coefficients of k
follows. One displacement component is given a unit value while the others

are taken to be zero. This unit displacement is agpplied at each boundary

point i.e., 1 =1, 2, 3 ~- n in succession and the resulting boundary
forces are computed at each of the boundary points. The stiffress influence

coefficients are then equal to the respective force values.

When the shell is acted upon by intermediate loads additional forces must be
added to equation (6-3-2), that is, the forces obtained from fixed edge support

[Ea. (6-2-7)]. Then equation (6-3-2) becomes

F = kb + FL . (6-3-3)

It is noted that the inverse of the stiffness matrix k 1s called the flexi-

1"n_n

bility matrix "a" and the elements of "a" are called the flexibility

influence coefficients (aij)
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6.4 Equilibrium Conditiong and Compatibility Requirements at the Juncture

of Shell Segments

When two or more shell segments are connected and are required to form an
integral structure,continuity requirements of the boundary forces F and
displacements & must be satisfied at the juncture. From section 3.6 on

boundary conditions the requirements for two shells are

PR s A T X !
(6-k-1a-d)
PR ’ K, =G '

where ﬁ and E have three components each while E and _’(:L have
only one. For a general shell structure it is sometimes desirable to decom-
pose the forces and displacements along rectangular coordinate directions so
that the components of shells 1 and 2, for instance, are taken in the same

direction. To this end, we can write

1=
N

1NX + JNy + kQZ =

. ~N ¢ 3
then
_I\_IX = 1N = i"éﬂﬁﬂ + iégﬁg + 1-236 ,
(6-L-2a~c)
Ny = }E j'gﬂNﬂ + »%QNQ + j£3Q N
N = N k ea N a ,
” k}i aﬂNﬂ + kEgNg + kE3Q
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and the displacement

a = iu +Ju + k= +au. +aw
~ x * Iy z Bt Y A T A3 ’
has components
4 = i-n = i-au, 4 jeasl. + aw
x = St IR T 23 ’
= — - PR e o = { & )|,_‘Jn_r~\
u - 1 = 1- u + «a.u + a.w > O—= fod
y % A T 3N T A3 TR
Q2. = ke = ie-aglp + Jeau. + aw .
z = 2 I IR Ay R 6
Then, equations{6-3-la,b) can be rewritten as
(N ) (u )
X X
N u_
F, = { 7} , 5. = ¢ % . (6-4-ka,b)
+ N 1 u
z z
\ MgJ \ Ulr‘ J

When the slope-deflection equations are employed the sign of the forces and
displacements are such that the vector sum of forces at a point are zero and
the displacement components are equal. Thus if points 1, 3, and 5 form
a common Jjuncture A , and Fi s 6i denote the force and displacement vector
in equatiomns (6-4-%a,b) at a point 1 , then the equilibrium and continuity

requirements at point A are

- -»
?i + F3 + F5 = 0

(6-4-5a,b)
51 = 63 = 65

Note that F and & are column vectors and equation (6-4-5a) denotes four

equations and equation (6-4-5b) denotes eight equations.
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6.5 General Procedure of Analysis

At this stage it 1s assumed that stiffness matrices have been obtained for

all shell segments employed in a given structure and that it is possible to

obtain the boundary forces Ff due to intermediate loads. It is required to

obtain a solution of the entire structure under the prescribed intermediate

loading and boundary conditions.

The solution proceeds as follows:

1)

A finite number of points are chosen along the cut shell boundaries

at which continuity will be satisfied.

From equilibrium requirements, equations of the type of equation (6-4-5a)

are written at each Jjuncture point. At points on a boundary which are
not juncture points 6§ or F or components thereof must be given.
This yields a number of simultaneous linear equations in terms of

unknown forces and displacements.

The unknown forces are related to displacements and fixed edge forces
by means of the stiffness matrix [equation (6-3-3)]. Then by means of
the continuity of displacements [equation (6-4-5b)] a set of algebraic

equations is obtained in the unknown displacements

wh = F (6-5-1)

where GR are the redundant displacements, K the stiffness matrix

of the entire structure, and F is a function of known data.
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4) Once a solution of equation (6-5-1) is obtained for 68 , the
forces at the juncture points are found by equation (6-3-3).
This in effect solves the entire problem since solutions internal

to each shell segment can be obtained once the boundary conditions

are given.
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7. CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

As a result of an extensive literature search, it is observed that no

analytic procedure exists that could be applied directly in the evaluation

of the stress fields peculiar to the multi-cell juncture configuration as
specified by NASA/MSFC. Consequently, it is believed, at least for the present
time, that the most feasible method of handling such a problem is to solve it

numerically by means of high-speed digital computers.

The necessary investigations required to formulate the theory and a numerical
method for the prediction of the membrane and bending stresses and the cor-
responding deformations of multicellular shell structures have been performed.
The method of solution is presented in terms of loads, geometry and material

properties.

It should be pointed out, however, that the resultant method of analysis
considers only the elastic theory of stresses as it applies to thin shell
structures. Thermal stresses due to temperature gradients have been taken
into account and orthotropic plate and cylindrical shell elements have also

been considered.

In view of the general aspects of residual stresses in welded structures
(Appendix III), it is felt that the joint efficiency and attenuation length
of welds should be incorpcrated into the theoretical analysis through the

experimental determination of residusl stresses.
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In order to ensure the feasibility of the numerical procedure developed in
the present work, a direct method of solving large systems of simultaneous
equations has also been developed (Appendix IV). Check problems involving
1700 equations have been solved by this method in the IBM 7094. Run time

for such a problem is about sixteen minutes using double precision arithmetic.
This accomplishment exceeds expectations at the start of the investigation,
and indicates that the present procedure is practicable for the solution of

stress problems in multicellular shell structures.

T.-2 Recommendations for Further Investigations

Based on the experience and results obtained in the present work, it is recom-

mended that the following additional investigations should be made:

1. Development of workable digital programs for the stresses and deforma-
tions of the specific structures using both isotropic and orthotropic
shell segments. This work shall include: (a) flow charts of the
developed programs, (b) optimization of mesh sizeAand total computer
running time, presumably using the available method of solving large
sets of equations recently developed by IMSC, (c) numerical examples
to illustrate how the analytic procedure is carried out, especially
in the process of evaluating the influence coefficients of shell
segments as well as satisfying the compatibility conditions along

the shell junctures.

2. Experimental determination of the pattern of residual stresses for

certain specific welded connections to be used in the structures
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under consideration, using the same type of material and welding
process as for the prototype structure. This work should also
include the testing of large samples of specimens and the appli-
cation of the results to determine the joint efficiencies of welds

through a justified theory of failure.

Conduct investigations on the effects of various possible means of

stress-relief on large welded structures.

Using the present available formulation, evaluate the buckling loads
of both isotropic and orthotropic segmental cylindrical shells with

displacements satisfying appropriate boundary conditions.

Feasibility study of predicting the dynamic response of the bulkhead
elements due to certain simple forcing functions, including the
approximate determination of the natural frequencies of shell segments.
This can be done numerically by means of the available equations
developed in the present work with pertinent inertia terms added to

the corresponding equations of equilibrium.

-3




M-03-63-1

8. BIBLIOGRAPHY

General Shell Theory

A.1l Flligge, W., Stresses in Shells, Springer-Verlag, Berlin, 1960

A.2 Green, A. E. and Zerna, W., "The Equilibrium of Thin Elastic Shells,

Quart. J. Mech. and Appl. Math., Vol 3, pp. 9-22, 1950

A.3 Gol'Denveizer, A. L., Theory of Elastic Thin Shells, Pergamon Press,

New York 1961

Ak Koiter, W. T., "A Consistent First Approximation in The General

Theory of Thin Elastic Shells," The Theory of Thin Elastic Shells,

W. T. Koiter, ed., Amsterdam, North Holland, 1960

A.5 Langhaar, H. L. and Boresi, A. P., A General Investigation of Thermal

Stresses in Shells, T. & A. M. Report No. 1z4, Department of Theoreti-

cal and Applied Mechanics, University of Illinois, Urbana, 1957

A.6 Love, A. E. H., A Treatise on the Mathematical Theory of Elasticity,

Dover, New York, 194k

A.7 Miller, R. E., Theory of Nonhomogeneous Anisotropic Elastic Shells

Subjected to Arbitrary Temperature Distribution, Engr. Exp. Station

Bull. No. 458, The Engineering Experiment Station, University of

Illincis, Urbana, 1960

A.B Naghdi, P. M., "Survey of Recent Progress in Theory of Elastic Shells,"

App. Mech. Rev., Vol 9, pp. 365-368, 1956

A.9 Naghdi, P. M., "On the Theory of Thin Elastic Shells," Quart. of Appl.

Math., Vol 1L, pp. 369-380, 1957

8-1




.10

A1

.13

L1k

.15

.16

17

.18

.19

M-03-63-1

Naghdi, P. M., "On Thermoelastic Stress-Strain Relations for Thin

Isotropic Shells," JAS, Vol 26, p. 1z5, Feb 1959

Naghdi, P. M., "A New Derivation of the General Equations of
Elastic Shells," Tech. Rpt. No. 6-90-6359, Lockheed Missiles and

Space Company, Sunnyvale, Calif., 1963

Nash, W. A., Bibliography on Shells and Shell-Like Structures,

Part I - TMB-863, Washington, 1954, Part II, Dept. of Eng. Mech.,

Univ. of Florida, 1957, Navy Dept., The David W. Taylor Model Basin

Novozhilov, V. V., The Theory of Thin Shells, Groningen, P. Noordhoff
Ltd., 1959
Reissner, Eric, "A New Derivation of the Equations for the Deforma-

tion of Elastic Shells," J. Math. and Phys., Vol 63, pp. 177-18h4,

Jan 1941

Reissner, Eric, "Stress Strain Relations in the Theory of Thin

Elastic Shells," J. Math. Phys., Vol 31, pp. 109-119, 195z

Sanders, J. L., Jr., An Improved First-Approximation Theory for

Thin Shells, NASA Tech. Ept. R-2k, 1959

Tomoshenko, $., Theory of Plates and Shells, McGraw-Hill, New York,

1940

Vlasov, V. Z., Basic Differential BEquations in General Theory of

Elastic Shells, NACA TM 1:41, Washington, D. C., Feb 1951 (V)

Vlasov, V. Z., The Theory of Momentless Shells of Revolution,

NASA TT F-6, Washington, D. C., Apr 1960

8-2




M-03-63-1

Specific Shell Geometries

B.1 Cosonka, D., "Symmetrically and Antisymmetrically Loaded Symmetric

and Antisymmetric Shells," Bautechnik, Vol 38, pp. 413-415, Dec 1961

B.2 Flligge, W. and Leckie, F. A., Bending Theory for Shells of Revolution

Subjected to Nonsymmetric Edge Loads, SU-113, Stanford Univ., Div. of

Engr. Mech., Stanford, Califl., 15 Nov 1957 (1)

B.3 Lawruk, B., "Hinged, Thin Shallow Spherical Shell with Rectangular

Projection,” Arch. Mech. Stos., Vol 11, pp. 767-782, Jun 1959

B.4 Griffin, D. S., A Numerical Solution for Plate Bending Problems

Bettis Atomic Power Laboratory, WAPD-230, Pittsburgh, Feb 1963 (U)

B.5 Hoff, N. J., "Thin Circular Conical Shells Under Arbitrary Loads,"

J.AM., Vol 22, pp. 557-562, Dec 1955

B.6 Mehmel, A., "Computer Program for Determination of Stress Resultants
and Deformations in Circular Cylindrical Shells, " Bauingenieur, Vol 37,

p. 188, May 1962

B.7 Nash, W. A., and Bridgland, T. F., Jr., Bending of Thin Conical Shells

Subjected to Arbitrary Edge Loads, Interim TR-Z Contract DA-01-009-ORD-671

Dept. of Engr. Mech., Univ. of Florida, Gainesville, Aug 1959

B.8 Radok, J.R.M., Kempner, J. and Romano, F. J., Numerical Stress Analysis

of Circular Cylindrical Shells Part I Basic Equations and Formulation

of Problems Numerical Scheme, PIBAL-490, Polytechnic Institute of

Brooklyn, Dept. of Aero. Engr. and Appl. Mech., Brooklyn, Jan 1959 (U)

B.9 Reissner, E., "On the Determination of Stresses and Displeccements for
Unsymmetrical Deformations of Shallow Spherical Shells," J. Math.
Phys., Vol 38, pp. 16-35, Apr 1959

8-3



.10

.11

.13

J1L

.15

.16

17

M-03-63-1

Schile, R, "Analysis of Thin Conical Shells Under Asymmetric
Loading," Proc. 4th Midwest Conf. on Solid Mech, Austin, Texas,

University Press, 1959

Schile, R. D., "Asymptotic Solution of Non-shallow Shells of

Revolution Subjected to Nonsymmetric Loads," J.A.S., Vol 29,

pp. 1375-1379, Nov 196

Steele, C. R., Nonsymmetric Deformation of Dome-Shaped Shells

of Revolution, Lockheed Missiles and Space Div., LMSC-895050,

Sunnyvale, Calif., Dec 1960 (U)

Steele, C. R., Shells of Revolution with Edge Loads of Rapid

Circumferential Variation, IMSD-895049, Lockheed Missiles and

Space Div., Sunnyvale, Calif., Dec 1960 (U)

Steele, C. R., A Solution for the Thin Elastic Shell with Surface

Loads, IMSC 6-90-62-100, Sunnyvale, Calif., Feb 1963 (U)

Tsui, E. Y. W. and Stern, P., A Critical Survey for the Methods of

Analysis of Spherical Shells, Tech. Rpt. No. 6-90-63-41, Lockheed

Missiles and Space Company, Sunnyvale, Calif., 1963

Thurston, G. A., "A Numerical Solution for Thin Conical Shells

Under Asymmetrical Loads," Proc. 4th Midwest Conf. on Solid Mech.,

Austin, Texas, University Press, 1959

Wilson, Bayard, "Asymmetrical Bending of Conical Shells," J. Engr.

Mech. Div., Proc. ASCE, Vol 86, pp. 119-139, Jun 1960




M-03-63-1

B.18 Wilson, P. E., and Spier, E. E., Numerical Analysis of Small

Finite Axisymmetric Deformation of Thin Shells or Revolution,

ERR-AN-153, General Dynamics/Astronautics, San Diego, 1 June

1962 (U)

B.19 Van Langendonck, T., "Spherical Domes Under Unsymmetrical Loading

Publ. Int. Assn. Bridge Struct. Engng., Vol 20, pp. 179-202, 1960

B.20 Zagustin, A. and Young, D. H., "Thin Spherical Shell Segments
with Symmetric and Antimetric Loading," World Conference on Shell

Structures, San Francisco, 1962

Multiply Connected Shell Structures

C.1 Borg, M. F., Observations of Stresses and Strains Near Intersections

of Conical and Cylindrical Shells, TMB-911 NS731-038, Navy Dept.,

The David W. Taylor Model Basin, Washington, Mar 1956 (U)

C.2 Gibson, J. E. and Marshall, W. T., The Design of Cylindrical Shell

Roofs, Princeton, New Jersey, D. Van Nostrand, 1961

C.3 Linkous, C. and Horvay, G., Analysis of Short Cylindrical and Conical

Shell Sections, KAPL-912, General Electric Co., Knolls Atomic Power

Plant, Schenectady, N. Y., 28 Apr 1953 (U)

C.t  Jones, R. H. and Orange, T. W., Theoretical Elastic Stress Distribu-

tions Arising from Discontinuities and Edge Loads in Several Shell-

Type Structures, NASA TR R-103, Cleveland, 1961

C.5 Murray, N. W., "General Method for Analysing Axisymmetric Discontinuous

Shells," Engineer, Vol 213, 25 May 196z, pp. 915-920

8-5



C.6

M-03-63-1

Myint, T., Radok, J.R.M., and Wolfson, M., "Numerical Solution of

Shell Intersection Problems," Ost. Ing.-Arch, Vol 16, Feb 196%,

pp. 253-270

8-6




M-03-63-1

Appendix I

I. GEOMETRY OF THE BULKHEAD

In this appendix the geometry of the bulkhead structure is completely
defined. This includes the necessary dimensions, coordinate systems, and

intersection of the component shells which comprise the bulkhead.

I.1 Dimensions of Bulkhead

Referring to Fig. I-1l, the geometry of the bulkhead structure can be completely

determined if the following five quantities are given:
R,Rl,Ro,qu,andq32.

For particular bulkneads these quantities are restricted in the following

manner:

T .
q)l = —N—,wnere N

number of cells = L4, 6, 8 --- 20

—_— >
R -R 2 tancpl

Tne true dimensions which will be frequently referred to in the development

of the numerical analysis are:

ab = (Rl - R) cot Ps
bc = (Rl - R) csc Ps
g, = sin T -
R
R
b—d = %E = T)E cos (p3
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ELEVATION B-B .

L__<

R; ELEVATIAN A-A
FIG I~l. BULKHEAD GEOMETRY
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1.2 Geometry and Coordinate Systems for Specific Shell Surfaces

The equations for a sphere, cone, cylinder and plate are given for a system

of rectangular coordinates (X , Y, Z) . Then a system of orthogonal curvi-
linear coordinates are presented for each of the shell elements. From this
information the first fundamental form, equation (3-2-3), and the base vectors,
equation (3-2-4), of the surface are given. By use of the second fundamental

form, equation (3-2-10), the principal radii of curvature are obtailned.

A. Geometry of Sphere ,

Fig. I-2 Geometry of Sphere

A.l1 FEquation of Sphere

The equation of a sphere in the rectangular coordinate system X , ¥ , Z 1is

£ = X +Y +2°-R = 0 . (1-2-1)

A.2 Curvilinear Coordinates

If the curvilinear coordinates Xl =@ X2 = 8 defined by Fig. T-2 are intro-

duced, then the relation between X , Y , Z and ¢ , © is

I-L
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X =-Rcosésing +R sindcosécos®
Y = Rsingsind . (--2-2a-¢)

Z = Rcospcosd +RsincosOsn¢, .

A.3 First Fundamental Form

From equation (3-2-3) and equation (3-k-1) the first fundamental form of the

surface of the sphere can be written as

(ds) = gF.dF = A (de)'+ 2 A AcosX dode + K (d6) | (I-2-3)

where
K =F,F
l—'[:# P ’
2 — -—
Az =£° ‘-r':o ,

A A, cosX = Lol .

If the unit base vectors of the X , ¥, Z , coordinate system are designated

i, J s k, then the radius vector i is

L =Xi+Yj+Zk . (1-2-4)
By equation (I-2-2), equation (I-2-4) can be written in terms of & and ¢ as
f:' =R{ (~cos¢ sing, +sIng cosq,?_cose)i + (smq; sme)j

(1-2-5)
+(cos¢ cos¢ +sing sing, cose)k} .
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The derivative of i with respect to © and ¢ are

r = R{(s;n¢sm¢2+cos¢cos¢2cose)i + (cos¢ sin 9) ]

+(- sindcosd +cos P sindcos e)k} (I-2-60-b)

’E,.== R -sm¢cosdglsmei +5m¢cosej - smcbsmcbzsmek} .

Then the Lame parameters Al , A2 are

A=R |
(I-2-7a-b)

AQ_=Q sind |

and, since z’e ~f,°=0 5 ©, ¢ form an orthogonal system of curvilinear

coordinates.

The unit base vectors of the middle-surface are

g | = % = -=;l9 = (s\n¢5|n¢z+cos¢cos¢1cose)i+(cosq»sme)j+<~Sm¢cos¢2+cos¢sm¢2cose)k)
\ [}

gz = -—2-3: -ﬁ”: —smecosgi + cos 9] —stn¢zsmek , (I-2-8a-¢)
2 2

a,= Q’_l X §z= (-coscbsmdgzq-smq; cosqszcosé)i + (s nd sin e)j-\-(cos¢cos¢2+smq>5m¢2cose)l( .

A.4  Second Fundamental Form

By use of the second fundamental form equation (3-2-10) it is possible to
obtain the principal radii of curvature as given by equation (3-h-lb) when
the coordinates coincide witnh lines of principal curvature. The radii ry

and r, can then be found, and it can be proved that the coordinates are
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lines of principal curvature by the following argument

(1-2-9 a-c)

2 .—
22~ 93 9.2,1 .

After performing the above scalar products it can be seen that the principal

radii of curvature are

n=c=R (1-2-10)

J

and that bm= b2'= 0.

B. Geometry of Cone

(R~R) —

Fig. I-3 Geometry of Cone

B.1 Equation of Cone

Ve ¢ .
The equation of a cone in the rectangular coordinate system X, y ¥, Z is

f =V +@V-4ame [X (_‘3.':‘3)]2 =0 . (I-2-1)

S(nd%
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By a rotation of coordinates through the angle ¢?_ the equation of a cone

in the rectangular coordinate system X , Y , Z 1is

{c =Y + (X cos¢, +Z.sin <bz)4- '!-c.'svr\'zdzo3

sing,

Xsmdg‘-z,c.os 4>1+ R“-Q ] =0 .(I-2-12)

B.2 Curvilinear Coordinates

If the curvilinear coordinates Xl = x; X2 = 6 shown in Fig. I-3 are introduced,

then the relation between X , Y, Z and x , © 1is

X =[x cos¢3- %’-;—%Jsmcpz-i-[x&ngcoselccs%

Y =xsné sin ) 3 (1-2-13 a-c)

Z= ‘[xcosb - R'-R]C“‘Pa *["5"“"3"‘“6] sne, -

3 Smo:b2
B.3 First Fundamental Form

Following the procedure set forth for the sphere the radius vector in terms

of X , @ |1is

~

- R- : .
r= [XCOS g—(smz) ]smcb?_-f-[)(‘.=.tr\4>$c.c>s,Q]Cos4;g 1+ (X ‘5m¢3 S\r\e)J

+{—[x cosd - (Q‘-R)]“sﬁ-}- ‘xsmgcoselsmg}k R

3 sind, (1-2-‘4.)
and the derivative of i with respect to X and © are
f’x:: (coscb_;smtbi-!-sm¢3cos¢2c0$e)i + (smq>asm6> ]
+ (- Cos¢,cos ¢+ smcpgs:n ¢, cos 6) K , (1..2_ \So-b)

£,°= ~-Xsindcos h81n1+Xsingcosdj —x sing sing sno k
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Then the Lam€ parameters A, » A, are found to be

A=l ,
(I-2-16)

A,=xsmo

)

w

and since | =0 , x, 6 form an orthogonal system of curvilinear
~IK

B3]

coordinates.

The unit base vectors of tne middle-surface are

= (cos 4:3«5"\ ¢ + s|n¢3cos¢zcose)l + sin ¢35m9 1

{1

+(—-cosgcos¢3+ smdgsmd’zmse)k ’

g:-SmQ cos¢li + cos8] —SmdsSind k , (1"2"”0~C)

93= (——sm¢35m ¢z-\- cosgcosél_cose)i + C°s4§, smej
+ (sm 4>% <:os4>z +sin ¢z°°s¢3 cose)k .

B.4 Second Fundamental Form

In a mgnner similiar to the sphere the principal radii of curvatures for the

cone are determined by equation (I-2-9) and equation (I-2-17). After performing

the required operations the principal radii of curvature are found to be

Nn=o ’

(I-2-18)
I; = X""Iﬂ‘;3 .

I-9
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wY
C. Geometry of Cylinder
s
)
Yx
L——ﬂNv o

Fig. I-4 Geometry of Cylinder

C.1 Equation of Cylinder

The equation of a cylinder in the rectangular coordinate system X, Y, %2

is

f, =X4+Y-R*=0 . (1-2-19)

C.2 Curvilinear Coordinates

2

If the curvilinear coordinates Xl = x ; X~ =© shown in Fig. I-4 are

introduced, then the relation between X , Y , Z and x , © is

X = Rcos® ,
Y =Rsn 8 (1- 2-20a-<)
Z ==X .
C.3 First Fundamental form
The radius vector i in terms of x , © 1is
F = Rcos6i +Rsindj-xk , (1-2-21)

I-10
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and the derivatives with respect to x and 6 are

-k

|

(I-2-22)
f,e= ~RsnBi +R cosO] .

’
The Lame parameters Al and A2 are found to be

A = 1
AL

(I-2-23)
A=R |
and since [ ¢ T =0;x,0 forman ortnogonal system of curvilinear

coordinates.

The unit base vectors of the middle surface are

= -sindi +cos8] (I-2-240-c)

Q, =cosB1 +sin)

~3

C.4 Second Fundamental form

In a manner similiar to the sphere the principal radii of curvature for the
cylinder are determined by equation (I-2-9) and equation (I-2-24). After

performing the required operations the principal radii of curvature are found

to be

(I-2-250,b)

I-11
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D. Geometry of Plates

D.1 Eguation of Plates

The equation of the plate which intersects the cylinder, sphere and cone is

given by

£, =Y-tong[(R-RItX]=0 . (1-2-26)

The equation of the plate which intersects the cone is given by

f,‘ =X +R,-R-R,=0 . (I-2-271)

I-12
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1.3 QGeometry of the Intersection of the Shell Elements

The intersection of two surfaces is a curve common to both. This curve has
coordinates obtained by solving the equation of the two surfaces simultaneously.

If i is the radius vector of the curve (Fig. I-5) then the unit vector tangent

to the curve is a =_d_f_ . a-»- l)
N" ds "

|
10
-~

r

-
FPig. I-5 1Intersection Curve

X

The geometry of the intersection is important in the comsideration of the
boundary conditions of the shell elements. It is shown in section 3.6 that

the angle between éﬂ and B

1 is necessary to define the boundary conditions.

This angle is obtained by

cosh=3,-3, . (1-3-2)

To determine cos A an expression for éﬂ is needed. This is given by
g, = %-5___,: A3, d«: +A1§,.‘ciﬁl
[ (da)+ K (46T ]

when the coordinates coincide with orthogonal lines of curvature. For the

(I- 3-3)

intersection curve the coordinates are not independent and are related by

the intersection equation. If the intersection equation is differentiated

I-13




implicitly and the definition

dp=fdu 1-3-4)

is used, tnen equation (I-3~3) can be written as
Ei - T Auéin *“\g!?i?
~n - 2 2 a2}

K +K.8]

The direction cosine is now given by

oa :.’1- A| T ’

P~ ? 2135
TR A

where f 1s defined by equation (I-3-4) and the intersection relation is

(I-3-5)

cos>\ =§‘ (I-3- 6)

lmposed. Following is a summary of the intersection equations and direction

cosines of the bulkhead shells.

A. Sphere

A.1 Sphere and Cylinder Intersection

The intersection of the sphere and cylinder is found by solving equation

(I-2-1) and equation (I-2-18) simultaneously to yield

Then by setting equation (I-2-2c) equal to zero the required intersection

equation between ¢ and © can be obtained as
Cose'-'--c&q,icéq: . (I-3-7)

Tne direction cosine for this intersection is obtained by equation (I-3-6) and

equation (I-3-7) as

cosh= T sin b sin8 . (1- 3-8)

I-14
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A.2 Sphere and Plate Intersection

An equation between ¢ and © at the intersection of the sphere and plate

is found by substituting equation (I-2-2a, b) into equation (I-2-26) to yield

sin8 - fan b,cosd,cos - 'i:ﬁ%[(%-') -sng cosa|=0. ({I—3-9)

Since equation (I-3-9) can not be solved explicitly for 6 or ¢ a simple
expression can not be obtained for the direction cosine. The equations required

to solve for cos A are:

!

['F's ' + | ]% (I- 3-10a-b)
. dong |- -)cone vony
Sin ¢ Cos9++an¢‘c05¢ts\n0 J

CoOS\ =+

and equation (I-3-9).

A.3 Sphere and Cone Intersection

Referring to Fig. I-1, it is seen that the sphere intersects the cone such

that

¢ =
¢4 ? (I-3-1la-b)

o<lol¢o, |

where 6_ is found by equation (1-3-9) in which ¢ 1is set equal to (bh .

The direction cosine along this intersection is

c.os)\f-O .

I-15
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B. Cone

B.1 Cone and Sphere Intersection

In terms of the coordinates of the cone the intersection of the cone and sphere is

X =X =bd=(R-R) 22 | (- 3-130-b)

where GC has been defined in equation (I-3-11).
Again the direction cosine is found to be

cos A = O . QI"S"U4)

B.2 Cone and Plate #1

If equation (I-2-13) is substituted into equation (I-2-26), the required inter-

section equation is found as
swn B —+on¢ coS ¢ cosd = M[cos d._snd ]
! 2 Sin &, 3 2 .

It can be shown that the solution of this equation for 6 ylelds © = @C

Thus the intersection relations are

0s X € X
I-3-18)

It is found that cos A along this cone plate intersection is given by

cos A =1 . (I—:S—IES)
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B.3 Cone and Plate #2

In a similiar manner as plate #l, the intersection of the cone and plate #2

1s found by substituting equation (I-2-13a) into equation (I-2-27) to yield

X = R. . (1-3-11)

lcos 453 sSin Ql-q- Sing, cos ¢zc-sa}

for all © . However, 6 is restricted to * Qc by plate #1.

Along this intersection

Y cinbcos ¢,

cos\ = _
[Cos‘¢zs\n‘9 + (Coscbssm ¢, sing,cos ¢‘coso’) ]"z

- (I-3-18)

D. Cylinder

D.1 Cylinder and Sphere Intersection

As seen before the cylinder intersects the sphere at Z = O . Thus, the

intersection relations are

X = 0 3
T-3-19)
for all @ 3
and the direction cosine is
cosA = 0 (1-5-20)

D.2 Cylinder and Plate #l

From Fig. 1-1 it is seen that the cylinder intersects the plate such that

8=t ¢, , (I-3-21)

for all x »
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The direction cosine is

(I-3-22)

I+
o]
-

cos A =

I-18
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Appendix II

II ANISOTROPIC PIATES AND CYLINDERS

II.1 Introduction

It is sometimes desirable to construct shells having high bending stiffness
to increase its buckling strength or to make it capable of carcrying concen-
trated loads. This increased beﬁding stiffness is achieved by sandwich con-
struction and by integral stiffeners on one side of the shell. The important
thing which the analyst does not want to lose sight of is the possibility of
sacrificing transverse shear stiffness in trade for a gain in bending stiff-
ness. This can happen in two ways; either as a consequence of the transverse
shear stiffness being decreased and approaching the bending stiffness in magni-
tude or as a consequence of a very "soft" core. In either case the analysis
becomes appreciably more complicated in nature and does not apply without
modifications to include the effects of shear deformations. It is important
that a substantial increase in bending stiffness can be obtained without an
appreciable increase in weight in these cases. In this appendix, considera-
tion is given to plates and cylinders of uniform thickness stiffened by ribs
and stringers integrally attached to one side as shown in Fig. II-1. The

ribs and stringers are assumed to be orthogonal to each other.

If the spacing between ribs and stringers is large it is necessary to analyze
the structure as if it were composed of shell panels and stiffeners. However,
when the spacing is small it is desirable to consider the limiting case which
is an anisotropic shell. The only difference between an isotropic and aniso-

tropic shell is the form of Hooke's law. Thus it is first necessary to obtain
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a set of constitutive equations, then the governing differential equations are
obtained in a manner similar to the isotropic shell. The development follows

that of Fliigge® while the notation is that of Dow<.

ITI.2 Constitutive Equations

In order to write the constitutive equations for a shell element, the stress-

strain relations must be known for individual layers. If it is assumed that

the ribs and stringers are orthogonal and are oriented in the direction of theprincipal
coordinates, a special type of anisotropy is obtained, namely, orthotropic.

For an orthotropic material the stress-strain relations are

(11-2-1la-c)

Tip = G Yo

where the strains are defined in terms of displacements by equation (3-4-12).
To determine the stress resultants and couples for a shell element in which
the ribs and stringers have the same dimensions and spacing [Fig. II—2] it is

necessary to perform the operations

= fo t - j t
Nl = f cl dz + { Gl 5 dz ’ Ml Gl zdz + ol 5 dz .
S S
- t - | [o,t
N2 = J 02 dz + 02 3 dz s M2 02 zdz + 02 5 dz,
S S T
(I1-2-2a-g)

lFiGgge, W., Stresses in Shells, Springer-Verlag, Berlin, 1960

EDow, N. F., Libove, C., and Hubka, R. E., Formulas for the Elastic Constants
of Plates with Integral Waffle-Like Stiffening, NACA Report 1195, Washington
D. C., 1954

II-3




M-03-63-1

12

=
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=
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1]
=
l_.l
o
"
nt—

T zdz + j T
Tr

- z
N21 = £ 712(1 + 2 ) dz

where s denotes integration through the skin and r the integration through

the rib or stringer with the middle surface of the skin as reference. It is

assumed that ribs and stringers strain in the direction of the applied load

and bending of the stiffeners in the plane of the skin is small (i.e.,in plane shear

carried by skin). Then the constitutive equations for a plate and cylinder

are
Plate
N = Es§ +Ee -58SX
X X X vy cx
N = Ee¢ +Ee -8SX
N V X Yy cCYy L]
N = N = ?
Xy YX Xy H
(I1-2-3a-f)
My = DX # Dvxy - 5%
M = DX +DX -S&
Y X Yy v cy »
M = M = D _X
Xy P Xy Xy .
Cylinder
= P e - X
Nx EXCX + Evse Sc X ,
N = Ee¢ +Ee -8SX
e VvV X e 6 c e ®
Nex = EeX Y ’
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D
= v 4+ =X -2-lg-
No = Eox Y+ %o , (II-2-4a-g)
[ J

M = DX + DX -Seg

X X X v © c X 1]

Me = Dvxx + Dexe - Scc .

xe Mex - Dexxxe .

where
Eh t d 2

E = E = E = [1 ==(1 - )]

X y e 1-p° hb

B = th2 ’

v 1-v
E_ = E_ = 2

Xy ex 2(1+v) i

:)
a = —
uc CE t(b ?
3 2 2
b= = - _E_ 1+gg[(g) +12(§)]<1-v2>
J ° 12(1-v°) 3 s

=g Y

3 ' 3
_ En 2 ! = p—Eh”
ny Pox = T2(1ev) [l ( ) b], D, v d

12(1-v%)
If the stiffeners are not oriernted in the coordinate directions new stiffness
coefficients can be obtained by a rotation of the stiffeners. When a rotation of

L5° ig performed the constitutive equations for a plate and cylinder become

Plate

- % +me -1
Nx = El¢x+Eaey-28c[Xx+Xy] .
Ny = Eeex+Elcy—-ésc[)(x+)(y ,

1 sc 1

- - el 1 II-2-5a-f
Xy Nyx [Exy + 2 CF 2 sc)gcy s ( 2-5a-f)
M = DX +0D -Ls e + %
x 1% Exy 2 c[ X ey] ’
M = DX +DX -=s5[¢ +i]
Yy 2& 1"y 2 cjx y ’



M
Xy

Cylinder

ex

X6

where

yX

o
T3
b

+

ISIT
=

i
=

-

o=

>

(o,

S

1 1 -
2 D12xxy-§sc Y
- Dxe sc Dxe ¢
Ete 13 - 2% [Tt 2%
- Dxe Sc Dxe Sc
Elee LR T2 X T kR T 2We R
S D
1l ¢t — 1 X0
2 75] Y- 35 Xye T IR [xe ) Xx]
S D
R v xo
EC]'Y ZSche+—[ER

1 - -
DEXQ -2 5, [ex + ee]

DX - % Se [Ex * Ee]

+ E + 2E J

4 Xy ’
+E - 2E J

v Xy >
+ Db + xy] ,
+D - D

v XY] ’

- Dv] )

IT.3 Governing Differential Equation

The governing differential equations for

w are cobtained by the same procedure as

1

’

b -}

anisotropic shells in terms or

set forth in section 3.

M-03-63-1

(I1-2-6a-g)

U, Vo,

The equa-

tions for plates and cylinders with ribs in the coordinate directions and

rotated 45° off of the coordinate directions are as follows
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a) Plate — Stiffeners in Coordinate Directions

Eu,  + Exy Uyt (Exy + Ev) Viy * S Wi = Py
? -\ ¢ B v " . = -
(Exy + E,) u’xy + uy_;yy + ‘xyy'xx + Scw'""y py
S u, + S v, + D_w, +2(D +D ) w
o XXX c U yyy X XXXX v Xy XXYY
+ D w, = D
Yy oyyyy Z
b) Cylinder — Stiffeners in Coordinate Directions
B X
RE U, _+—2u, + (E.+E ) v, +RS ws
X XX R ee v ex xe C XXX
+ Est - ‘RPX
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1 De 1 Sc
"R (I$ + 2D x) Wo - ;5 xS Yoo TR \Fs T R Wig
:.Rpe ,
Ev 1
- Scu’xxx - ;5 (D. + 2Dex) Voo t ;H (De - RSC) Vi oo
+ 2 (s ~-RE )v, -Dw - = (. +D_)w
R3 c ! X XXXX RE v ex Xxee
De SC Ee
- -m2=Sw, -2y =
;H eee R3 ee RE Z
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Plate — Stiffeners 45° from Coordinate Directions

1 Sc 1 Sc
El Wt (Exy +3 -5—) u,yy + (E2 + Exy + 3 —5—) v,xy
l = -
*t3 Sc W + 5, w’xyy Py
s S
i_% ( l_g
(E2+Exy+20 u’xy+ Exy+20 v, +Elv,
(1I-3-3a-c)
+ S W, y+§S w’yyy —-py .
1 3 3 1
> Sc s vy + 5 Sc u'xyy + 5 Sc v’xxy + > SC v,y_‘Yy
] = D
+ Dl Viexxx t [2D2+D12]w’xxyy+ D]_W yYyy z
Cylinder — Stiffeners 45° from Coordinate Directions
S D
1 1) N
(REl) Wex TR (Exe+ 2 C u’ee+[E2+Exe LLR2+ X 8/ xe
Dxe (Dxe Sc) P
- LR Viee ” B\ TR - 2/ ™ xxx - IR ¥ xxe
D D E
1 Xe Xe 2
5 ) hm—— 3 - : = - R
+R(ER+Sc)wxee+ weee+wa px ?

LR® R UR®
Dxe 1 Dxe DlE "
+ T Yooy TR D2 -t RSC w,xx (II-3- a-c)
Dx 1 Dxe Rsc
——ZW: -—§[D2+T-—2- W)
S
+%[El-%_lc?<]w’e = - Rp
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Appendix IIT

III GENERAL ASPECTS OF RESIDUAL STRESSES IN WELDED STRUCTURES .

III.1 Introduction

Residual, inherent, locked-in or reaction stresses are the self-equilibrated
stresses within a structure when the surface and inertia loads are absent.
These stresses are caused primarily by the initiation of localized plastic
deformations of & body. Although plastic deformations may be induced by
various means such as welding, forming, non-uniform cooling, cold-working,
restraint of deformations and phase transformations of the materials, etc.,
as far as the structural integrity is concerned, it is believed that those

initiated by welding under restraint are the most serious ones to cope with. -

The significance of the residual stresses in cold wrought metals was observed
about half a century ago by E. Heyn. The effect of these locked-in stresses
on the strength of structures and ships, however, was recognized only within
the last two decades because of the large-scale brittle failures of the all-
welded ships and bridges experienced during the period of World War II. In
spite of the fact that both theoretical and experimental studies have been
carried out by various investigators, facts concerning the causes of failures
of such structures and their prevention are still not thoroughly understood.
The obvious reason for this is mainly attributed to the complexity involved
in the failure mechanism. As a result of these investigations, however, the
essential phenomena regarding the role of residusl stresses are revealed to

a certain extent, and different methods of evaluating such stresses have been
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developed. The purpose of the present work is to present an up-to-date and

brief resume of the general effects of residuasl stresses in welded structures.

III.2 Methods of Evaluation

Method of invectigating the magnitude and distribution of residual stresses
may be classified as (A) Analytical and (B) Experimental. The latter method:
may be further subclassified as (B-1) Destructive, (B-2) Semi-destructive and
(B-3) Non-destructive.

A. Analytical Method. If the time history of temperature distribu-

tion within the structure due to welding and stress-strain relation of the
materials at various temperatures are known, residual stresses may be obtained
from an elastic-piastic analysis, using the flow theory of plasticity and ap-
Propriate yleld condition. Since this is a nonlinear problem and the numerical
analysis can only be performed stepwise, choosing small-time increments for the
individual solutions, and results are then accumulated successively. FigureIII.l
shows schematically how the residual stress in the middle portion of the center-
welded plate is generated. It should be noted that this mathematical analysis
.is rather complicated and it is not exact because accurate information of the
temperature distribution and its variation with time is very difficult to obtain,
especially for multi-pass welding processes.

B. Experimental Methods

B.1 Destructive Methods

B.1.1 Method of Sectioning. This method is applied to welded structures

composed of thin plate elements in which the locked-in stresses are essentially

uniform through the thickness. The basic assumption used is that the residual
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stresses are elastic. If the plates are cut, the relieved strains can be
measured by means of suitable gages and then the stresses are computed from
the linear stress-strain relations. The technical procedure involves (a)
installing the strain gages on the surface of the plates after the welding
process, (b) calibrating the gages, (c) sectioning of the plates, (d) reading
the relaxed strains and (e) computing the stresses from the elastic law.

B.1.2 Method of Trepanning or Boring. This method is used to obtain

both surface and internal residual stresses of thick plates and tubes. The
principle involved is essentially the same as that of sectioning except that
the technique 1s refined such that the cutting through the thickness is per-
formed in a sequential manner and intermediate strains are recorded after each
layer is trepanned or bored. Consequently, stresses at different locations
across the thickness are evaluated.

B.2 Semi-Destructive Method

B.2.1 Method of the Hole. This method involves the application of

the known stress-strain relations for thin plates with and without a hole.

The residual stresses are obtained through the differential strains measured
experimentally before and after a hole is cut. Since the size of hole to be
cut is small (about 1/2" diameter), the evaluated stresses are quite accurate.
It should be remarked that strain rosettes were exclusively placed outside of
the hole in the previous works. It is expected that better results, perhaps,
may be obtained for the future studies if they are cemented within the hole
since improved smaller strain gages have been developed lately.

B.3 Non-Destructive Methods

B.3.1 Photoelastic Method. This method has been used to study the
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quantitative residual stress distribution in welded plates by simulating a

weld in the transparent materials such as the photoelastic bakelite. The
pattern of the frozen or residual stresses can be observed through the polari-
scope using polarized light. The fringe values are then converted into stresses
rom the stress-optic law.

B.3.2 X-Ray Diffraction Method. The residual stresses in the regions

away from the weld can be evaluated by this technique. It involves the deter-
mination of the locked-in strains which are assumed to be proportional to the
changes in the interactomic distances between planes of atoms. This can be
done by measuring the Bragg angle from 2-exposure x-ray diffractions, and the
corresponding stresses are expressible in terms of the material properties

and change of Bragg angle.

It is believed that this is the only method to obtain the quantitative residual
stresses nondestructively. This method also provides a better way of measuring
steep gradients because it can determine strains within a very small area. The
disadvantages of this method are: (a) only the surface stresses on smooth sur-
faces can be observed, (b) the grain size of the material must be neither too

large nor too small, and (e) the stresses in the weld are difficult to determire.

III.3 Stress or Strain Patterns

Some stress or strain patterns of some simple (as-delivered, as-welded and
heat-treated) structures are shown below. The strains are determined by the

destructive methods.

III-k




M-03-63-1

CUMULATIVE
TEMPERATURE TEMPERATURE THERMAL THERMAL
DISTRIBUTION INCREMENT STRESS STRESS

N

l /) vaﬁ
Time =0 sec.

/\,\,,\/*\A JL

Time =-T|-

b

Similarly for Time =T, ,T;,.,.,

N e
* FIG.IL e
FORMATION OF RESIDUAL STRESSES

IN A CENTER-WELDED PLATE

III-5

Time=Ty,




M-03-63-1

- - \ ' s +55
| +60
Y WELD ON BOTH EDGES

. +82

‘Double -V

FIG.M-2 RESIDUAL FIG.I-3 RESIDUAL STRESS
STRESS DISTRIBUTION,  DISTRIBUTION,EDGE-WELDED
CENTE&-‘!}I‘_EEZLDED PLATE

III-6




—View A—
B J

M-03-63-1

III-7

View B
-
- »)
L View c—!
As-Delivered Stress-Relief Annealed
|
~— \‘
X \
| I
=== ==c= ?52%:—#—: View A S0 I PR N N
4
7 /
B ~
A \
/I/' ¥
/(\ —— - View B ﬁ? “L\
\\ t 1 \‘
|\
|
~S_
Y
—— e _.___&_.__x--——i . ___4—___-—¥—__.______
e e e s View C SR — SO
vz + 5
— g
=
. ‘I
'“OEOMP‘QwEo;SCON TEO:I:W . N." s.d 0 onMmoé’gesz T?:;lON one
STRAIN 'de STRAIN
—--For Side

FIGI-4 RESIDUAL STRAINS FORMED DUE
TO COOLING AFTER ROLLING 8Wé7 BEAM



M-03-63-1

+TENSION
~-COMPRESSION

STRESS SCALE 10°x10" BOX DIMENSIONS |
NOT ORAWN {
X TO SCALE

-

- FlG.W-5
TYPICAL RESIDUAL STRESS
DISTRIBUTIONS

III-8




M-03-63-1

FIGURES Il € () -6(d)

STRESS - K8\

o6 a8 10
FRACTION OF THICKNESS

.

02 o4

(WAVERAGE STRESS DIs-
TRIBUTIONS IN AS RE-
CEIVED PIPE

20F

20}

10
TRANSVERSE 3 TRESS
\ - ——
° ~ ,l — . —
/\\-/ \/
CIMCUMFERENTIAL
~10} STaess

STRESS~KSI

=201

" 02 oA o0t os 0
FRACTION OF THICKNESS
() AVERAGE STRESS DIS-
TRIBUTIONS IN WELDS

MADE WITH A00°F PRE-

A

HEAT AND |200°F STRESS

RELIEF POSTHEAT

STRESS-KSI

s

"‘E A . " £ [
02 o4 o0& o8 1.0
FRACTION Of THICKNESS
() AVYERAGE STRESS Dis-
TRIBUTIOINS IN WELDS
OF AS-WELDED,AS RE-
CEWED PIPE

20
20}
TRANSVERSE STRESS
a |° o /"
X /
! /
o |
®w O P4
m ’— -
5
-lo tCIﬂC-UMFIR'N'ﬂ Al
STRESS
-20¢
= S

a2 04 06 o8 10
FRACTION OF THICKNESS
(d\)JAVERAGE STRESS DIS-

TRIBUTIONS IN' WELD

MADE W ANNEALED
PIPE

III-9




M-03-63-1

ITI.3.1 Stress Distribution in Plates

Fig. IITI-2 shows the typical longitudinal stress pattern of some as-delivered
and various center-welded plates. Fig. III-3 shows the corresponding stress
distribution of the edge-welded plates. These plates are of ASTM Designation

AT Strﬁctural Steel, welded manualily.

III.3.2 Strain and Stress Distributions of W and Box Members

Fig. III-4 shows the strain distributions for both as-delivered and stress-
relief annealed cases of a non-welded W beam. Fig. ITI-5 shows the general
stress distributions of welded H and box sections. All base materials are of

A7 Steel. The joints were machine welded using automatic submerged-arc.

III.3.3 Variations of Stresses in Welded Pipe

Tig. III-6 shows the stress variations due to circumferential single-V butt
welds in 5-1/2 inch mild-steel pipe, 1/2-inch thick, with different welding

procedures.

IIT.4 Discussion and Recommendations

In view of the stress patterns as shown in the foregoing section and the
associated results given by various investigators (see references listed at

the end of this appendix), the following general conclusion can be drawn:

a) Residual stresses are usually present in the unwelded wrought

product.

b) Residual stresses in welded structures vary with the structural
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configuration, the weld design, the welding process, pre- and
post-weld history, the stress relaxation characteristics of base

metal, weld assemblage procedures, etc.

Residual peak stresses in weldments which are not stress relieved
are governed by the stress relaxation characteristics of the base
metal. An annealing treatment would remove residual welding
stresses completely, however, any measured residusl stress after
annealing would be the result of differential cooling from annealing
temperatures. Artificial aging after welding as applied in alumi-

num alloys would also reduce residual stresses.

Bending strength is reduced when an external load is superimposed
on a residual tension stress field. Residual stresses may influence
the buckling characteristics of a column, however, a weldment is a
metallurgical discontinuity and its mere presence could contribute
to lowering buckling strengths significantly, especially in columns

of low or medium slenderness ratios.

The magnitude of transverse stresses perpendicular to the weld in
plate structures is usually small as compared to those along the
weld. However, the pattern of transverse stress distribution has

not given as much attention as that for longitudinal stresses.

It should be noted that previous studies on residual stresses were limited in

simple steel structures, and very little work can be found on welded structures

made of aluminum alloys and shapes involving a change in thickness with various

ITI-11




M-03-63-1

end restraints, using different types of welding procedures. It is expected
that new stress patterns may be found, especially in the vicinity of welds

with restraints such as Jjoining a Y-extrusion with tapered plates and ribbed
shell elements in multicellular pressure vessels. Furthermore, when such all-
welded large structures are not stress relieved, it is expected the two-dimen-
sional residual stresses are very high, and the longitudinal stresses within
the weld may eventually reach the yield limit. If one wants to find the joint
efficiency by means of the ordinary uni-axial standard coupon testing procedure,
unregsonable results may be produced due primarily to neglecting of the simulta-
neous action of the longitudinal stresses, unless large specimens are tested
bi-axiglly. The procedure of the latter method of testing is rather involved

and difficult to perform, however.

Residusal stresses are a special kind of pre-stress, and they can be incorporated
into the theoretical analysis by simple superposition or by establishing a
reasonable joint efficiency of weld. Both methods reguire that the magnitude
and distribution of stresses are known. The joint efficiency is established
through a well-known yield criterion of failure using energy approach and uni-
axial test results. Unfortunately, the analytical method of evaluating the
residual stresses, as mentioned before, is very difficult and experimental
methods are less complicated. Consequently, it is recommended that some experi-
mental work on the accurate determination of the residual stresses should be
carried out. Investigations should also be conducted on the effects of various

possible means of stress-relief of residual stresses.
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Appendix IV

IV. A DIRECT METHOD OF SOLVING LARGE MATRICES OF
FINITE-DIFFERENCE EQUATIONS

IV.l Introduction

The generation of a set of simultaneous finite difference equations to replace
the original governing differential equations has been discussed in section 6.2.
This appendix contains a description of a method used to solve the finite-
difference system and a discussion of a digital computer program for a cylindri-
cal shell segment. The same general method is applicable with slight modifi-

cations to other geometries.

A typical rectangular mesh for a cylinder whose boundaries coincide with mesh

lines is shown in Fig. IV-1l. Since there are three unknowns at each mesh point,

BOUNDARY LINE

BOUNDARY

, Ling OF
SYMMETAY

=0

3

2"— sl _ [ . ¢

LINE OF SYMMETARY

Fig. IV-1 Mesh Point Numbering for Cylindrical Shell Segment
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even such a small mesh [Fig. IV—l] leads to a system of 60 simultaneous equa-
tions while a 30 by 30 mesh generates 2700 equations. A digital computer pro-
gram to form the finite difference equations corresponding to a rectangular mesh
of these dimensions presents no unusual difficulties. The first requirement is

to determine the ordering of the equations and the unknowns in the simultaneous
equation system. Finite-difference equations [Eq. (6-2-6)] for a general interior
point (i , j) are written in terms of the neighboring points (i + 1, J) .
(i-1,3), (i, 3+1), etc. Thus the coefficients for an equation at a
particular point (i , j) are obtained simply by substituting the numerical values

of 1 and J in these general formulas. Speclal tests must be made to alter

the results of this substitution for points near the boundary or symmetry lines.

The general methods available for the solution of the resulting linear system

AX =B (e.g. Gauss elimination, etc.) are not practical for such a large number
of equations due to excessive storage and time requirements. Iterative methodsl
have been used successfully in solving large systems derived from finite differ-
ence approximations. When such techniques are applicable, they frequently provide
the most rapid and accurate method of solution. Examination of the eguation
system AX = B shows that the conditions insuring convergence of the point itera-
tive methods are not satisfied. Several methods have been proposed to modify

the matrix equation so that these conditions will be satisfied [see Bodewig2 and
Faddeev&s}. However, the resulting increased cost in storage and running time

per iteration makes such a procedure impractical in the present situation. More
recently, the use of "block" iterative techniques has been investigated by sev-

eral authors. Unfortunately, the theoretical basis for such techniques has so

lVarga. R., Matrix Iterative Analysis, Prentice-Hall, New York, 1962
éBodewig, F., Matrix Calculus, North-Holland Publishing Company, Amsterdam, 1959
3Faddeeva, V. N., Computational Methods of Linear Algebra, Dover, New York, 1959
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far only been provided for specialized problems. Preliminary trials to the

pPresent problem indicate that Gauss-Seidel 2-line iteration converges but only

very slowly. Thus some method to accelerate convergence along the lines of ’
the various overrelaxation schemes described by Vargal must be developed before

iteration will become practicsl. Consequently, while it is felt that iterative .
methods should be investigated and may ultimately provide the best method, initial

efforts have been concentrated on developing a feasible direct solution. A direct

method also appears attractive when solutions are desired for the same matrix A

with many different right hand vectors B

IV.2 A direct method for the solution of AX =B

The method developed to solve the simultaneous equation system is related to
Choleski decomposition. By the Choleski2 decomposition algorithm, any non-singular
matrix can be factored into the product of an upper-triangular and a lower-tri-
angular matrix. The solution vector X can then be readily obtained from the
factored form of the matrix. However, storage requirements and the computational
effort required preclude the use of this algorithm for large systems. Instead, a
factorization of the matrix A into the product of an uppef—triangular and a
lower-triangular matrix is accomplished by first partitioning A and then de-
vising a recursion algorithm applicable to the submatrices of A rather than to

its elements.

The feasibility of this method is directly dependent on the form of the matrix

A which In turn is dependent on the ordering of the equations and unknowns.. One
natural method for obtaining a suitable partitioning is the following one. The
three finite difference equations for the first mesh point on the first row (1 , .
1) become the first three equations of A . The following equations are taken

from the remaining points on the first row. The unknowns are ordered in the same

manner. Then the equations for the first point on the gecond row are written,
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and so on. The matrix A is accordingly partitioned in the manner shown below,

where m 1s the number of rows in the finite difference mesh.

A - 0] Ch Dh Eh Fh Gh 0 .
C

Gm—2

Fm—l
0 0 C D E

The submatrix Fl » for example, contains coefficients of unknowns from the
second row of the mesh which appear in equations for points on the first row

of the mesh. The most significant feature of A 1is that all of the non-zero
submatrices of A are contained in five diagonals. This is caused by the

fact that for the present problem, the finite difference equations for a given
mesh row involve unknowns from mesh rows at most two rows above or below. The
matrix A can now be factored into the product of a lower-triangular matrix L

and an upper triangular matrix U both of which are partitioned in the same

manner as A .

A = W
- . - -
g, 0 0 I M N O 0
B, J, O 0 I M, N, 0 .
C, H, J, O 0

L= I3 % U3 y =
0 ¢, H J 0 KR

0 0 I M,

o o c, H J_ 0 .
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The lowest diagonal of L 1is the same as the corresponding diagonal of A
and the main diagonal of U consists of identity submatrices. The remaining

submatrices of I and U are obtained from the following recursion scheme:

1 H = D, - C.M, i = 2, m
i i ii-2
2 Jl = El - HiMi-l - ClN1—2 i = 1, m
~ 1 _
3 Mi = Ji (Fl HiNi_l) i = 1, m1l
_ 1 _
I N = J.7G, i = 1, m2
1 1 €1

For each fixed 1 , the submatrices of L and U are formed in the listed
order (when the subscript of a term is less than 1 , the corresponding term is
zero). The proof that A = LU is obtained directly by multiplication. Of
course, it 1s necessary that the submatrices Ji all be non-singular. When
the factorization has been completed, the auxiliary matrix equation LZ =3B 1is

solved by the following recursion:

= gL -
z, = J; (By - W2, -CZ ) 1 = 1l.m

Finally, the equation UX =2 1is solved by another recursion:
X . =72 . -M X ., - N .X . i = 0, m1
m-1i m-1 m-i"m-1-1 m-i" m-2-1i

(when a subscript is greater than m , that term is zero )

IV.3 A digital computer program for a cylindrical shell segment

A digital computer program has been written for the IBM 7054 using the

FORTRAN II, version II language which solves for the displacements of a
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cylindrical shell segment with its edges clamped. Assuming a finite differ-
ence mesh with an equal number of rows and columns, a system of approximately
3000 equations can be solved. The program is organized into a main program,
which controls the sequence of steps in the various rec:rsion schemes, and a
collection of subroutines called by the main program in which data is generated
or matrix operations are performed, etc. The chief difficulty in programming
the method described above is the problem of minimizing memory storage require-
ments while at the same time keeping the total computation time within reason-
able bounds. A 30 by 30 finite difference mesh generates submatrices con-
sisting of 8100 elements. There is therefore room for at most three such
submatrices in core storage at a given time. Consequently, a substantial
amount of intermediate tape storage is unavoidable. By selecting the sequence
of operations carefully and overlapping tape activity with intermal computation,
the delays caused by tape reading or writing have been reduced to a small
fraction of the total time. The program has been designed so that the number
of rows and columns may be varied independently. The only limitation on the

size of the mesh is the number of columns, which must not exceed 32. Let m

vbe the number of rows and n the number of columns in the finite difference

mesh. An approximate formula for the time required on the 7094 is:
£ = m - n5/20,000 minutes .

It should be noted that the execution time is directly proportional to the
number of rows. If a mesh with many more columns than rows should be required,
it would be desirable to rewrite portions of the program to interchange the
role of the rows and columns. No essential alteration of the method would

be necessary to accomplish this.
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The accuracy of the computations has been improved by utilizing the double
precision features available on the TO94 for the most critical operations

of matrix multiplication and matrix inversion.

Figure IV-2 and Fig. IV- 3 present the results of the computer program for
displacements along the two lines of symmetry for varying mesh spacing.

The loading is due to a uniform pressure normal to the shell surface.
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